
International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

347

ON THE MECHANIZATION OF KLEENE ALGEBRA IN FORMAL LANGUAGE

ANALYZER

Dmitry Cheremisinov

Abstract: Pattern matching is the technique of searching a text string based on a specific search

pattern. The pattern specified by the regular expression forms the basis for building a variety of formal

language texts converters. Kleene algebra or the algebra of regular events is an algebraic system that

captures properties of several important structures arising in computer science like automata and formal

languages, among others. Regular expressions are formulas of Kleene algebra. In this paper we

present a formalization of regular expressions as Kleene algebra in the formal language analyzer. It is

proposed to change the traditional model of the language parser by pattern matching based on the finite

state machine into the algebra of patterns with side effects. The proposed deterministic semantic of

regular expression eliminates the need to switch from the regular expression engine and user code

execution environment and back again.

Keywords: Formal language parser, regular expression, Kleene algebra, finite automaton, deterministic

semantic of regular expression.

ACM Classification Keywords: I. Computing Methodologies: I.1 SYMBOLIC AND ALGEBRAIC

MANIPULATION: I.1.3 Languages and Systems, Special-purpose algebraic systems.

Introduction

Regular expressions [Friedl, 2006] are often used in practice in order to build programs, which are text

analyzers. It is quite common to generate useful and efficient parsers for programming languages from

a formal grammar. It is also quite common for programmers to avoid such tools when making parsers

for simple computer languages, such as file formats and communication protocols. Such languages are

often regular and tools for processing the context-free languages are viewed as too heavyweight for the

purpose of parsing regular languages. The extra run-time effort required for supporting the recursive

nature of context-free languages is wasted.

Processor of regular expressions is a parser based on a deterministic finite automaton. This machine

may be represented as a static data of the program in the form of the output/transitions table. The table-

controlled analyzers are used in Perl, Python, Emacs, Tel and Net. The processor of regular

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

348

expressions does not "catch" the subexpression of the original regular expression, because an

indication of recognition of a regular language sentence is transition to the final state.

Unlike the problem of recognizing language that traditionally is considered in the theory of formal

languages, the task of language analyzer is to build the structure of the analyzed text, when it is parsed.

A program that attempts to verify written text for grammatical correctness is a grammar checker. The

recognition algorithm has the form of grammar. To construct a grammar analyzer it is necessary to add

steps that form a data structure that represents the result of the analysis. Regular expressions describe

regular languages. They have the same expressive power as regular grammars. Actions to recognize

parts of the text alternate with actions of constructing the parse results in parser algorithm.

The structure of the analyzed text is reflected in the structure of a regular expressions. The way to use

the information about this structure is to include the action code in the analysis process. The action code

constructs the results of analysis. The need for interleaving of the analysis and action puts restrictions

on how to include action code in the parsing algorithm. Since the actions must be performed after the

transition of the machine to the final state, the actions that should be performed after the recognition of

subexpressions may be included in the program only by splitting a regular expression into smaller units.

The more actions are included in the analysis process, the fewer benefits from a regular expression

processor as a software tool, since it reduces the code generated by a regular expression and it

augments the percentage of software "glue".

It is proposed to substitute the traditional model of the operation of pattern matching based on the finite

state machine model for the model of the pattern algebra. Regular expression language becomes

deterministic in the interpretation of the pattern algebra, ensuring the inclusion of the action code not

only at the end of the expression, but also after subexpressions.

The regular expression language

Regular expressions are represented as a set of possible formulas of a Kleene algebra. So, Kleene

algebra is formal semantics, or interpretation of regular expressions as a formal language. We now

recall some basic definitions of formal languages and Kleene algebra that we need throughout the

paper. For further details one can use the works of Hopcroft et al. [HMU, 2000] and Kozen [Kozen,

1997].

An alphabet ߑ is a nonempty set of symbols. A word ݓ over an alphabet ߑ is a finite sequence of

symbols from 	ߑ. The empty word is denoted by ߝ and the length of a word ݓ is denoted by	|ݓ|. The

concatenation 	" ⋅ " of two words ݓଵ and ݓଶ is a word ݓ = ଵݓ ⋅ ଶݓ obtained by juxtaposing the

symbols of ݓଶ after the last symbol of ݓଵ. The set ߑ∗ contains all words over the alphabet 	ߑ. The

triple (Σ∗,⋅,ε) is a monoid.

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

349

A language L is subset of Σ∗. If Lଵ and Lଶ are two languages, then Lଵ ⋅ Lଶ = {xy|x ∈ Lଵ and y ∈Lଶ}. The operator 	⋅ is often omitted. For	n ≥ 0, the n୲୦ power of a language L is inductively defined by L଴ = {}, L୬ = LL୬ିଵ. The Kleene’s star L∗ of a language L, is ⋃ L௡௡ஹ଴ . A regular expression (r.e.) ݎ

over Σ represents a regular language L(ݎ) ⊆ Σ∗ and is inductively defined like that: ∅ is a r.e. and L(∅) = ∅; ε is a r.e. and L(ε) = {}; ܽ ∈ Σ is a r.e. and L(ܽ) = {ܽ}; if ݎଵ and ݎଶ are r.e., (rଵ + rଶ), (rr) and (rଵ)∗ are r.e., respectively with L((rଵ + rଶ)) = L(rଵ) ∪ L(rଶ), L((rଵrଶ)) = L(r)L(r)
and L((rଵ)∗) = L(rଵ)∗. We adopt the usual convention that "∗ "	has precedence over	⋅, and 	" ⋅ "
has higher priority than 	" + " , and we omit outer parentheses. Let RegExp be the set of regular

expressions over Σ, and let Regஊ be the set of regular languages over Σ. Two regular expressions rଵ

and rଶ are equivalent if (rଵ) = L(rଶ) , and we write (the equation) rଵ = rଶ. The equational properties

of regular expressions are axiomatically captured by a KA, normally called the algebra of regular

events, after the seminal work of S.C. Kleene [Kleene,1956].

A ࣥ = (K, 0,1,+,⋅,∗) is an algebraic structure such that (K, 0,1, +,⋅) is an idempotent semiring and

where the operator " ∗ " (Kleene’s star) is characterized by a set of axioms. We also assume a relation ≤ on K, defined by a ≤ b ⇔ୢୣ୤ a + b = b, for any a, b ∈ K.
Let S be a chain (a binary relation on Σ∗, which is transitive, antisymmetric, and total) of words w over

an alphabet	Σ. For chain S we can define the open interval (a, b) = X. The constituency set C is the

set of intervals in S. This set of intervals contains S and each word w ∈ S as its elements, and is

constructed this way, so any two intervals belonging to C either do not intersect or one of them is

contained in the other. The elements of such sets are called constituents. The constituent x dominates

the constituent	y, if y is a part of x and	y differs from	x. Constituents of a constituency set of regular

expression r are symbols from Σ and operation symbols from the set ۦ⋅, +,⋅⋆, 1,0ۧ . Given a

constituency set C, the analysis process divides up a word into major parts or immediate constituents,

and these constituents are in turn divided into further immediate constituents. The process continues

until irreducible constituents are reached. The end result of analysis is presented in a tree form that

reveals the hierarchical immediate constituent structure of the word at hand. This is a parse tree of

regular expression. Regular expressions can express the regular languages, exactly the class of

languages accepted by deterministic finite automata.

Let R be a regular expression. We can construct a finite automaton M with L(M) = L(R) recursively.

The idea is to use the fact that the set of languages of finite automata is closed under union,

concatenation, and Kleene star operations. In general case, R is the constant, either R = x for x ∈ Σ, R = ε or R = ∅. In all cases, L(R) is finite. Hence, there exists a trivial finite automaton for L(R).
Otherwise, R is an operation applied to one or two smaller expressions. Either R = Rଵ ∨ Rଶ , R =RଵRଶ, or R = Rଵ ∗. Since Rଵ and Rଶ are smaller regular expressions, we can construct automata Mଵ

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

350

and Mଶ with 	L(Mଵ) = L(Rଵ) and L(Mଶ) = L(Rଶ) . Then there exist finite automata for the

languages L(Mଵ) ∪ L(Mଶ), L(Mଵ)L(Mଶ) and L(Mଵ) ∗. Therefore, there exists a finite automaton

for L(R). We can construct a finite (nondeterministic) automaton for L(R) by conversion constituency

set of R.

The finite automaton is ܯ =	 (Σ, ܳ, ,଴ݍ ܶ, ܲ) , where ߑ is an alphabet; ܳ – a finite set of states; ݍ଴ ∈ ܳ is the initial state; ܶ ⊂ ܳ – a set of terminal conditions; ܲ – the transition function defined by

the set of rules in the form of jki qaq , where iq and jq are the states, the input symbol ka or it is

the empty symbol ߝ. A finite automaton is deterministic finite automaton (DFA), if each of its transitions

is uniquely determined by its source state and input symbol, and reading an input symbol is required for

each state transition. A nondeterministic finite automaton (NFA) does not need to obey these

restrictions. The transitions without consuming an input symbol are called ߝ-transitions. ߝ-transitions

appear in the component automata, when constituents 	ܴଵ ∨ ܴଶ or ܴ ∗ are transformed.

An analysis state of the word v ∈ Σ∗ is an ordered pair (v, i), with i being an integer 0 ≤ i	 ≤ |v|; |v|
is the length of the word. An analysis state (v, i) is the representation of the word in hand in the form of

the concatenation v = br, |b| 	= 	i	. A transition rule q୧a୩q୨ of an automaton M can be applicable

into analysis state (v, i) , if it can be represented as a concatenation v = ba୩r, |b| 	= 	i and the

current state of the machine is q୧. If the automaton M is the NFA then its current state is a set of states

and q୧ must enter into the set. The application of the transition rule transfers the automaton M to the

state q୨ (if automaton M is the NFA then q୨ becomes an element of the current state) and the current

analysis state becomes	(v, i + 1). The automaton M is applicable to the analysis state	(v, i) if there is

a rule for the initial state q଴ applicable in the analysis state (v, i), and after applying all possible

transition rules the automaton M is in a terminal state. Initial analysis state (v, l)	and the analysis state (v,m) , when the machine is in a terminal state, give a representation of the word v as the

concatenation 	v = bxt, |b| = l, |bx| = m . The word x is recognized as a part of v by a regular

expression	R if L(M) = L(R) for the automaton M. 	The set of all words that are recognized by a

regular expression R generates a regular language.

In this interpretation (semantic) of the regular expression language a regular expression is partial

function from the analysis states of word in hand. Text analysis with the interpretation of the analysis

operation as a partial function from the set of analysis states is the analysis by patterns [Aho, 1990].

String searching algorithms try to find a place where a string called pattern is found within a larger string

or text. In most programming languages there is the realization of such an operation, in which the

pattern is recognizable word itself (regular expression constructed by concatenation only). The pattern

search operation is a lexicographic enumeration of analysis states for the purpose of finding (one or

several) occurrences of a pattern. Boost.Regex [Boost, 2002] allows using regular expressions in C++

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

351

programs into pattern search operations. As the Boost library is a part of the standard library since

C++11 programmers don’t depend on Boost.Regex if their development environment supports C++11.

Nondeterministic nature of standard interpretation of the regular expression language

The process of applying transition rules to the automaton M may be fixed in the form of a parse tree in

the same way as it is done by parsing. The set of the transition rules of the automaton M is a grammar

in which the alphabet of non-terminal symbols is a set of states. A parse tree is an ordered, rooted tree

that represents the syntactic structure of a string according to some context-free grammar. But the set of

the transition rules of the nondeterministic automaton M is not a context-free grammar. An internal

vertex of the automaton parsing process tree is labeled by the current state (a current state of a non-

deterministic machine is a set of nonterminal symbols). If such an internal vertex is split then the

terminal vertexes appear, which are dead-ends of analysis. In this case the non-determinism of the

standard semantic of regular expressions is manifested. The parse tree cannot be built by linking

actions with machine instructions (parsing algorithm does not "catch" subexpressions).

There exists an algorithm (the power set construction) that can transform the NFA M into a more

complex DFA with identical functionality. The set of the transition rules of a deterministic automaton is a

context-free grammar and a parse tree can be built by linking actions with transition rules of DFA.

However, this set of transition rules has no structural similarity with the constituency set of regular

expression in hand, and therefore the structure of the regular expression cannot be used during the

analysis of a text.

We can use language formed by a limited subset of regular expressions for the analysis of sub-

expressions. Regular expressions of this limited subset are transformed into deterministic automata.

Some transition rules with an empty input symbol can be deleted preserving equivalence of automata.

However, this approach significantly reduces the figurative possibility of regular expression language

and significantly increases the risk of programming errors, as the procedure for establishing the

properties of determinism is not trivial. This approach is proposed for use in the Ragel State Machine

Compiler [Thurston, 2007].

The pattern algebra

A partial function is a function that is defined only on a part of its domain. A McCarthy conditional

expression [McCarthy, 1960] has the form    1 1 2 2 n np f ; p f ;…; p f defining a partial function h ,

coinciding with one of the functions if , where the number i satisfies the following condition:

       i(    i jp x j j < i p x ;

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

352

where the symbol ¬ denotes the inverse of logical value. If such i does not exist the function h is not

specified. Conditional expressions are a device for expressing the dependence of quantities on

propositional quantities. Here variables pi’s correspond to propositional expressions and the variables

fi’s are expressions of any kind. A propositional expression (predicate) is an expression whose

permissible values are T (for truth) and F (for falsity). The rule for determining whether the value of a

McCarthy conditional expression is defined can be determined in the following way. Examine the p’s

from left to right. If a p whose value is T is encountered before any p with undefined value is

encountered, then the value of the conditional expression equals to the value of the corresponding f (if it

is defined). If any undefined p is encountered before a true p, or if all p’s are false, or if the f

corresponding to the first true p is undefined, then the value of the conditional expression is undefined.

Let if и ip are symbols of some functions and predicates. The partial conversion function f , specified

on the set of analysis states to parse a string, is the pattern, if for any states

         ,w, j , = v,i = f and w =v, j i . Let  p f, is the predicate whose value is T if the

pattern f is defined on the analysis state α. If we have for patterns 1 2f = f then    1 2p f = p f .

The basic relationship describing a function is that of application. Let a function that applies functions to

arguments is called as an apply function. This establishes a one-to-one correspondence between

functions of two variables and functions returning functions, which we know under the name of currying.

We will use the infix notation for apply function	݂# =  that maps a pattern f and the analysis state β

into the analysis state ∝ . Then we introduce the following operations on the patterns.

The catenation fg of patterns f and g is the function defined by the conditional expression fg# =	p(f,) → g#(f#). The alternation fg of patterns f	and g is the function defined by the conditional

expression fg# = 	p(f,) → (f#); 	p(g,) → (g#) . The iteration f ∗ of a pattern f is the

function defined by the conditional expression with the infinite number of members f ∗ # = 	p(fଵ,) → ; 	P(fଶ,) → fଵ#; … ;P(f୧,) → f୧ିଵ#; … . The n-th power of a

pattern f ୬ is the function defined by the recursion	f ଵ# = f#	, f ୬# = f#(f୬ିଵ#).
The introduced functions form the pattern algebra the elements of which in contrast to Kleene algebra

are the analysis states, i.e. pairs (v, i), where v∗ and i is an integer. The nontrivial constants of the

introduced algebra are primitive patterns recognizing the occurrence of words consisting of the only

character of the alphabet Σ. The constant 1 of this algebra presents the identity pattern. It has the

following properties: if f is a pattern, then 1∗ = 1, 1f = f, f1 = f, 1f = 1, f1 = g. The pattern g

is the everywhere defined pattern if 	g# = 	p(f,) → (f#);	¬p(f,) → 1.

The regular expression language agrees with the set of formulas of the pattern algebra. The operation

of applying pattern is similar to the process of applying transition rules of an automaton, which was built

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

353

by the regular expression. The difference is that a nondeterministic selection of transition rules of the

automaton is replaced by the arranged invocation of checks in the expression of alternation operations.

By this feature the pattern algebra is deterministic semantics of the language of regular expressions.

The analysis states  and  = f()represents the word v in the form of the concatenation ахc, i.e. the

pattern f recognizes the word x as a part of v. The set of all words that are recognized by the pattern f
forms the language L[f] recognizable by the pattern f. It is easy to verify that L[f]		L(f).
The complement operation is included often in the signature of the Kleene algebra for the convenience

of practical use. If a and b are regular expressions then the complement 	(a– b) define s the language L(a– b) of words in L(a) but not in L(b) . The negation operation is more convenient in pattern

algebra, it is defined as # = 	݌(݂,) →  .

The language substitution

The language substitution is a rule of operating strings of symbols. It is an extension of the word

substitution rule of Markov algorithm. The language substitution can be specified as a triple (ܮଵ, ,ଶܮ )
where	1ܮ, :are languages and the function  2ܮ ଵܮ → ଶ [Cheremisinov, 1981]. The apply function ofܮ

language substitution : ଵܮ → to input string produces the word ܹ from a word ܸ (i.e. input string)	ଶܮ

in the following way:

1. Check to see whether any of ݔܮଵ can be found in the word ܸ.

2. If none is found, the apply function is undefined.

3. If one ݔܮଵ is found to form word W the first of them can be used to replace the leftmost

occurrence of the matched text in the input string with ݕ = (ݔ)ܮଶ.

A pattern ݂ that recognizes language L[f] with juxtaposed single-valued function :	L[f] → ଶܮ is a

pattern with side effect [Sebesta, 2009]. The operation  = f() represents the basic effect of the

pattern. The side effect of a pattern can be another pattern. The patterns with side effects are the types

of recursive functions. As a class of general recursive function coincides with the class of Turing

computable functions (Turing–Church thesis), so patterns with side effects are the effectively calculable

functions. The class of patterns with side effects is Turing complete or computationally universal. The

consequence of the algorithmic completeness of the regular expression patterns with side effects results

in the possibility of recognition of any type of language in Chomsky's classification, not just the class of

regular languages.

Algebra of patterns with a side effect is built by the modification of the interpretation of the constant 1 of

this algebra, i.e. the identity pattern. In this algebra only the identity patterns has side effects. Algebra of

patterns with a side effect contains the set of identity patterns, which differ by their side effects. An

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

354

identity pattern with a side effect corresponds to a function that is applicable to the analysis state when

the previous pattern was applicable too. If the side effect defines the substitution of a word that was

recognized by the previous pattern, then the catenation of the identity pattern with the side effect

corresponds to a word substitution rule of Markov algorithm. The regular expressions of the algebra of

patterns with a side effect define Markov algorithms. The application of this regular expression to the

word ܸ	is the substitution of languages. Thus, regular expression of the algebra of patterns with a side

effect is the algorithm for transforming words by substitution rule based on the constituents set of the

regular expression. The construction of this algorithm is implemented by "embedding" the identity

pattern with the side effect into the analysis procedure. Operations representing the side effects of

identity patterns specify the algorithmic basis of language substitution functions.

Regular expression with the semantics of the pattern algebra could be imagined as a program on a

special programming language. Application operations of the primitive patterns define the set of

operations that make up this language. The control operations of the programming language correspond

to the functional forms of regular expression. They specify the means of sequencing the application of

primitive patterns. The variables whose values represent parsing states are not explicitly referred to the

program text, their existence is assumed for each such program.

The prototypes of the algebra of regular expressions with a side effect are macro languages. In these

languages a macroinstruction is a rule or pattern that specifies how a certain input sequence (macro-

call) should be mapped to a replacement output sequence according to a defined procedure (macro-

procedure). The mapping process that instantiates (transforms) a macro use into a specific sequence is

known as macro expansion. Language substitution (ܮଵ, ,ଶܮ ) in the form of macro is described by a

pattern describing characteristics of language 1ܮ and by algorithm of constructing the language 2ܮ. In

the case of language substitution in the form of regular expression, the constituents of a regular

expression are defined as macro-call formal parameters; words that are recognized by constituents are

the actual parameters; the side effect forms macro-procedure. The regular expression language is

similar to XSLT language, but unlike XSLT, the regular expression language is better suited to handle

unformatted text.

The compilation of regular expressions with a side effect

Let U be a set of variables and V be a set of possible values of variables of ܷ. Let us define a

machine Ω which memory states are functions from U into V , so the set S of all memory states

coincides with the set of functions VUs : . The control state of the machine Ω is a pair  iv,

where v is a word and а i – an integer.  ΩLv defines the text of the program for the machine Ω ,

v . Let the programming language  ΩL is a regular expression language. The set  v of

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

355

control states of program ݒ of the machine Ω coincides with a set of analysis states of program ݒ. The

set   is the union of  v for all programs of the language  ΩL .The instruction set of Ω is a set

of patterns with side effects defined on Cartesian product    ΩLΩ  . If the pattern f is an

instruction of Ω , then the set of analysis states coincides with the set of control states where the

instruction is applicable. The side effect of f is the function that transforms the given memory state into

resulting one. The machine Ω is specified by the pattern   nf…ff 21 , where if is a member

of the instruction set of the machine Ω . The regular expressions with side effect are programs

of  ΩL .

Given the program р of the machine Ω . For each control state)(p we can describe a transition

function)(: pSi  , that defines control state of the machine Ω after execution of an instruction

allowable in control state  . The union of all i specifies a function   : () ()p S p that is

denoted as a schema of р . The schema of р can be represented by a graph)),((pΩG . The

vertices of ܩ correspond to the control states and the edges are marked with values of memory

variables from U . A program scheme describes (models) a concrete program. Concrete programs can

be obtained from schemata by means of interpretation which consists in bringing some concrete

variables and operations into correspondence with formal variables and operations.

An instruction of the machine Ω that changes only the state of the memory is called a converter, the

command that does not alter any memory state is called a resolver. Resolvers are patterns without side

effect. In graphical scheme representation of recognizers are denoted by diamonds, converters – by

rectangles (Figure 1).

Figure 1. The templates of program schemata which perform analysis of character strings

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

356

Memory U for the machine Ω performing analysis of character strings is composed of the variables

iu, representing the analysis state of the parse string; stack to store numeric values and work variable ݆
of integer type. The converters with labels , and ← ↙ define the operations that store he variable ݅
on the stack, which is empty at the beginning; load the variable ݅ from the stack; delete the top-most

element of the stack, respectively. The converters marked by  or  define the operations that push

the work variable ݆ into stack or move ݆ into ݅.
The program flow of program scheme р in the memory state 0s is defined as follows. The program flow

is the travel under the scheme step by step. A program scheme has always one active instruction, which

is pointed by a control state. The program flow starts from the control state  0р, in a state 0s of the

memory U of the machine Ω . The execution of a converter ݕ is the transition of memory state x into

state  xy . The execution of a recognizer does not change the current memory state but selects one of

the outgoing arcs of the resolver to continue travel under the scheme. If recognizer is labeled by a

variable ݑ, then we select the arc labeled by the value  xu . Execution of the program scheme is

completed when traveling lead us to the scheme output. The current memory state is a result of

execution of the program scheme in this case. Otherwise, the result is undefined. Thus, we decided to

consider program scheme as an imperative language and to use a structural operational semantics. The

operational semantic system in its entirety is an interpreter that links the program text to the set of

possible executions.

For the synthesis of the program scheme that implements the algorithm specified by the pattern a we

use reverse Polish notation of a pattern R . The synthesis algorithm uses a stack of a program schemes.

We parse reverse Polish notation of the pattern R . If current token is a primitive pattern, which

recognizes a single symbol, then we push into the stack the program scheme on Figure 1,a. If current

token is an operation of a regular expression, then we form new program scheme from the popped one

and push it into the stack. To form a new program scheme we use stereotype of the program scheme

on Figure 1,b (1,c,1,d) if an operation is the catenation (alternation, iteration). As a result the stack

contains the only scheme which is a program scheme that implements this pattern R , if the initial regular

expression is syntactically correct.

The interpretation of converters and recognizers of program schemes as expressions of conventional

programming language is the basis of the compiler of regular expressions, which performs the analysis

of character strings. Selection of the object language is mainly determined by the capabilities of the

programming system in which the language is used as an input. Object language should allow the use

of character string data type, and where there is the possibility to access the individual characters in a

string for this string data type.

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

357

The regular expression language and a compiler form a programming system of patterns which

performs analysis of character strings. Currently the compiler of this system is a preprocessor that

converts patterns into programs in the programming language C. To represent the analysis state of the

character string the pointer Achar  is used in programs in C. The stereotype of primitive patterns

(Figure 1,a) is given by n;+)+*(A=Bint  where ݊ is a recognizable symbol. The catenation

(Figure 1,b) is the stereotype ℎ	݂݅(! {	݃	}(ܤ . The alternation (Figure 1,c) is the stereotype Р. ;(А)	ℎ_ܾܽܿ݇ݏݑ݌ 	ℎ	݂݅	(В){	А	 = 	ܲ. ;()	ܾ݇ܿܽ_݌݋݌ .Р	}	݁ݏ݈݁	{	݃	 ;()	ܾ݇ܿܽ_݌݋݌ 	В	 = 	1; } .

The iteration (Figure 1,d) is the stereotype

.Р	}	݋݀ ;(А)	ℎ_ܾܽܿ݇ݏݑ݌ 	݂݅	(! ∗ 	В}(ܤ = 0; ;݇ܽ݁ݎܾ }	ℎ	В	 = (! В); !)	ℎ݈݅݁ݓ{ В); 	݂݅	(! В)В	 =−1; 	А}	݁ݏ݈݁ = Р. ;()ܾ݇ܿܽ_݌݋݌ В	 = 0; }�
Analyzers based on deterministic finite automaton have linear time complexity ܱ(|ܵ|) for strings of

length	|ܵ|, because it does not need to be rolled back (do not check twice a symbol of the analyzed

text). The analyzers, which are built by programming system of patterns, have the rollbacks as it is seen

from the stereotypes on Figure 1.

Conclusion

We have presented an operational semantics for the regular expression language. Our semantics of

regular expression gives the basis for building programming tools for the language analysis. The pattern

algebra represents both functional model of the constituent analysis of texts and the control flow model

of primitive templates execution during text analysis. Generally accepted formalism to describe the

structure of the constituents of the text is the grammar. The use of patterns with a side effect is able to

make the universal formalism from the regular expressions, as well as grammar. The implementation of

string analysis based on regular expression patterns with a side effect is potentially more effective than

the grammar parsing algorithm, because it is possible to control the sequence of applications of

grammar rules. The grammar parsing algorithm is not a part of the grammar formalism. Using grammar

rules as patterns is more natural in the case of a language substitution, especially in simple cases,

compared with the attribute grammars, because to compute language substitution ݂	(ݔ) 	= by the ݕ	

attribute grammars we have to take into account the parsing algorithm. However, the concern about the

control of the sequence of grammar rules is not so good. The optional degree of freedom may increase

the complexity of the description analysis.

The programming system of regular expression patterns has been successfully used for the

construction of the analyzers of interchange data formats [Cheremisinov, 2013].

International Journal “Information Theories and Applications”, Vol. 23, Number 4, © 2016

358

Bibliography

[Friedl, 2006] J.E.F.Friedl. Mastering Regular Expressions, 3rd Edition, O’Reilly, Sebastopol, CA, 2006.

[HMU, 2000] J.Hopcroft, R.Motwani, and J.D.Ullman. Introduction to Automata Theory, Languages and

Computation. Addison Wesley, 2000.

[Kozen, 1997] Dexter Kozen. Automata and Computability. Undergrad. Texts in Computer Science.

Springer-Verlag, 1997.

[Kleene,1956] S.C.Kleene. (1956), Representation of events in nerve nets and finite automata, in

Claude Shannon & John McCarthy, ed., 'Automata Studies' , Princeton University Press, Princeton,

NJ , 1956, pp. 3-41 .

[Aho, 1990] Aho A. Algorithms for finding patterns in strings // Handbook for theoretical computer

science, MIT Press. – Vol. A.,1990. – P. 257-300.

[Boost, 2002] Jeremy Siek, Lie-Quan Lee and Andrew Lumsdaine. The Boost Graph Library. Addison-

Wesley, 2002.

[Thurston, 2007] A. D.Thurston. Ragel State Machine Compiler User Guide

http://www.colm.net/files/ragel/ragel-guide-6.9.pdf, 2007.

[McCarthy, 1960] J.McCarthy. Recursive function of symbolic expressions and their computation by

machine, part 1. Comm. ACM – 1960, v.3, n. 4. – P. 184-195.

[Cheremisinov, 1981] D.I.Cheremisinov. Language substitution programming // Programming, Moskva:

Nauka, – 1981. – № 5. – P. 30-37.

[Sebesta, 2009] R.W.Sebesta. Concepts of Programming Languages, 9th Edition, Addison-Wesley,

2009.

[Cheremisinov, 2013] D.I.Cheremisinov. "Design automation tool to generate EDIF and VHDL

descriptions of circuit by extraction of FPGA configuration,"Design & Test Symposium, 2013 East-

West, Rostov-on-Don, 2013, pp. 1-4.

Authors' Information

Dmitry Cheremisinov – The United Institute of Informatics Problems of National

Academy of Sciences of Belarus, leading researcher, Surganov str., 6, Minsk, 220012,

Belarus; e-mail: cher@newman.bas-net.by

Major Fields of Scientific Research: Logic design automation, System programing

