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Abstract: Software models are central software development artifacts in Model-Driven Software 

Engineering (MDSE) approach. During the Requirements Analysis, Software Design and Software 

Development a variety of software models, represented as UML diagrams, are created. However, in a 

majority of software development approaches they are designed mainly. Considering the fact that new 

software models contain information from previous ones, software Model-to-Model transformation 

techniques facilitate the process of new software models obtaining by means of reusing information 

from software models created before.  

An approach for performing Model-to-Model transformation, which is based on graph transformation, is 

presented in this paper. Transformational operations are considered on meta-level and concrete level. 

Software models are represented as graphs.  

Software tool, that allows performing transformation from communication diagram to class one, is 

described. This tool is designed as a plug-in for IBM Rational Software Architect (RSA) 7.5.5.2. Engine 

medini QVT, integrated in IBM RSA project, supports execution of QVT-R script. Source software 

models (communication diagrams) are designed in IBM Rational Software Architect. Target software 

models are also processed (opened) by means of IBM RSA.  
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Introduction 

Software modeling is an integral activity that is performed on software project development that follows 

a Model-Driven Development (MDD) approach. It is applied to express software with the aim of reducing 

risk and managing complexity of activities, performed in different software development processes. And 

the challenge of projects that heavily rely on modeling is to transform designed software models. A 

software model transformation, which is an automated way of processing models, can be written in a 

general-purpose programming language, such as Java. However, using a special-purpose 

transformation language is a more flexible approach since it does not require complex and redundant 

coding constructs but focuses on relevant domain features. Also using a special-purpose model 

transformation language increases maintainability, because changes introduced into transformation 

scripts require less effort to be implemented and no recompilation since scripts are not embedded into 

transformation software. 

Previously, an approach to transform models into text was used exclusively because a final goal of the 

transformation was to obtain code for the development of software. Plus, the transformation was fixed 

and completely not capable of change in the implementation of a transformation tool. With the 

introduction of Model-to-Model transformation activity the objective did not change but rather an 

additional layer of abstraction was included in order to increase the quality of desired result. This is 

accomplished by taking advantage of existing semantic relations between different representations of a 

model to be developed. 

The techniques employed for modeling are standardized by the Object Management Group (OMG). 

Among them are Unified Modeling Language (UML) to define software models expressed as diagrams, 

Object Constraint Language (OCL) to specify constraints to objects, etc. These widely-accepted 

techniques are often used to define software requirements in an Agile approach when interacting with a 

customer. After the meetings with a customer a great number of diagrams is created through which a 

model is generated. This serves as a substantial input for the process of Model-to-Model transformation. 

The key in the proposed approach is to transform into a model that reflects software architecture better 

than other representations. So Model-to-Model transformation fits mostly between the stages of 

software analysis and design. 

In order to implement Model-to-Model software transformation process on a project that follows MDD 

approach the hardest part is to figure out appropriate relationships between the model elements of given 

and desired model views. This might make a lot of time analyzing, designing and developing software to 

gain insight on the relevant model patterns that can be mapped into each other under conditions that 

should hold. But according to Model-to-Model transformation approach, this kind of experience helps 

automate the process of software design, which reduces time and effort needed to develop software. 
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Instead of creating necessary design all the time wasting effort that could be invested into other 

pressing project matters, required software model can be generated from existing model. 

This approach is customary to use at large projects that develop software with high level of complexity, 

because only such types of software can provide a necessary amount of models for the discovery and 

analysis of transformation rules. And due to their size, they can be primary beneficiaries of considered 

approach for saving time and effort, which are valuable resources that have direct correlation with 

money. 

Review of software Model-to-Model transformation types 

Model transformations and languages for them have been classified in many ways. Some of the more 

common distinctions drawn are: 

Number and type of inputs and outputs: 

In principle a model transformation may have many inputs and outputs of various types; the only 

absolute limitation is that a model transformation will take at least one model as input. However, a 

model transformation that did not produce any model as output would more commonly be called a 

model analysis or model query. 

Endogenous versus exogenous: 

Endogenous transformations are transformations between models expressed in the same language. 

Exogenous transformations are transformations between models expressed using different languages. 

For example, in a process conforming to the OMG Model-Driven Architecture, a platform-independent 

model might be transformed into a platform-specific model by an exogenous model transformation. 

Unidirectional versus bidirectional: 

A unidirectional model transformation has only one mode of execution: that is, it always takes the same 

type of input and produces the same type of output. Unidirectional model transformations are useful in 

compilation-like situations, where any output model is read-only. The relevant notion of consistency is 

then very simple: the input model is consistent with the model that the transformation would produce as 

output, only. 

For a bidirectional model transformation, the same type of model can sometimes be input and other 

times be output. Bidirectional transformations are necessary in situations where people are working on 

more than one model and the models must be kept consistent. Then a change to either model might 

necessitate a change to the other, in order to maintain consistency between the models. Because each 

model can incorporate information which is not reflected in the other, there may be many models which 

are consistent with a given model. 

Horizontal vs Vertical Transformation: 
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A horizontal transformation is a transformation where the source and target models reside at the same 

abstraction level (e.g. Platform independent or platform specific levels). Typical examples are 

refactoring (an endogenous transformation) and migration (an exogenous transformation). A vertical 

transformation is a transformation where the source and target models reside at different abstraction 

levels. A typical example is refinement, where a specification is gradually refined into a full-fledged 

implementation, by means of successive refinement steps that add more concrete details. 

Syntactic versus semantic transformations: 

A final distinction can be made between model transformations that merely transform the syntax, and 

more sophisticated transformations that also take the semantics of the model into account. As an 

example of syntactical transformation, consider a parser that transforms the concrete syntax of a 

program (resp. model) in some programming (resp. modeling language) into an abstract syntax. The 

abstract syntax is then used as the internal representation of the program (resp. model) on which more 

complex semantic transformations (e.g. refactoring or optimization) can be applied. Also when we want 

to import or export our models in a specific format, a syntactical transformation is needed [Errata et al, 

2015]. 

Model Transformation Languages and Tools 

Atlas Transformation Language 

Atlas Transformation Language (ATL) is a model transformation language and toolkit developed and 

maintained by OBEO and INRIA-AtlanMod. It was initiated by the AtlanMod team (previously called 

ATLAS Group). In the field of Model-Driven Engineering, ATL provides ways to produce a set of target 

models from a set of source models. Released under the terms of the Eclipse Public License, ATL is an 

Model-to-Model (Eclipse) component, inside of the Eclipse Modelling Project. 

ATL is based on the QVT which is an Object Management Group standard for performing model 

transformations. It can be used to do syntactic or semantic translation. ATL is built on top of a model 

transformation Virtual Machine [Errata et al, 2015]. 

Janus Transformation Language 

Janus Transformation Language (JTL) is a bidirectional model transformation language specifically 

designed to support non-bijective transformations and change propagation. In Model-Driven 

Engineering, bidirectional transformations are considered as core ingredients for managing both the 

consistency and synchronization of two or more related models. However, while non-bijectivity in 

bidirectional transformations is considered relevant, most of the languages lack of a common 

understanding of its semantic implications hampering their applicability in practice. 
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The JTL is a bidirectional model transformation language specifically designed to support non-bijective 

transformations and change propagation. In particular, the language propagates changes occurring in a 

model to one or more related models according to the specified transformation regardless of the 

transformation direction. Additionally, whenever manual modifications let a model be non-reachable 

anymore by a transformation, the closest model which approximate the ideal source one is inferred. The 

language semantics is also presented and its expressivity and applicability are validated against a 

reference benchmark. JTL is embedded in a framework available on the Eclipse platform which aims to 

facilitate the use of the approach, especially in the definition of model transformations [Cicchetti et al, 

2010]. 

Epsilon family is a model management platform that provides transformation languages for model-to-

model, model-to-text, update-in-place, migration and model merging transformations. Epsilon 

Transformation Language (ETL) is a hybrid, rule-based Model-to-Model transformation language. ETL 

provides all the standard features of a transformation language but also provides enhanced flexibility as 

it can transform many input to many output models, and can query/navigate/modify both source and 

target models. 

Although a number of successful model transformation languages have been currently proposed, the 

majority of them have been developed in isolation and as a result, they face consistency and integration 

difficulties with languages that support other model management tasks. ETL, a hybrid model 

transformation language that has been developed atop the infrastructure provided by the Epsilon model 

management platform. By building atop Epsilon, ETL is seamlessly integrated with a number of other 

task specific languages to help to realize composite model management workflows [Errata et al, 2015]. 

Kermela  

The Kermeta language was initiated by Franck Fleurey in 2005 within the Triskell team of IRISA. The 

Kermeta language borrows concepts from languages such as MOF, OCL and QVT, but also from 

BasicMTL, a model transformation language implemented in 2004 in the Triskell team by D. Vojtisek 

and F. Fondement. It is also inspired by the previous experience on MTL, the first transformation 

language created by Triskell, and by the Xion action language for UML. Kermeta, and its execution 

platform are available under Eclipse. It is open-source, under the EPL. 

Kermeta is a general purpose modelling and programming language for metamodel engineering which 

is also able to perform model transformations. It fills the gap of MOF which defines only the structure of 

meta-models, by adding a way to specify static semantic (similar to OCL) and dynamic semantic (using 

operational semantic in the operation of the metamodel). Kermeta uses the object-oriented paradigm 

like Java or Eiffel. 
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Kermeta is a modeling and aspect oriented programming language. Its underlying metamodel conforms 

to the EMOF standard. It is designed to write programs which are also models, to write transformations 

of models (programs that transform a model into another), to write constraints on these models, and to 

execute them). The goal of this model approach is to bring an additional level of abstraction on top of 

the "object" level and thus to see a given system like a set of concepts (and instances of concepts) that 

form an explicitly coherent whole, which one will call a model [Errata et al, 2015]. 

Querry/View/Transform language 

The OMG has defined a standard for expressing M2M transformations, called MOF/QVT or in short 

QVT [Eclipse, 2016]. Eclipse has two extensions for QVT called QVTd (Declarative) and QVTo 

(Operational/Procedural). QVT Operational component is a partial implementation of the Operational 

Mappings Language defined by the OMG standard specification (MOF) 2.0 Query/View/Transformation. 

In long term, it aims to provide a complete implementation of the operational part of the standard . A 

high level overview of the QVT Operational language is available as a presentation from EclipseCon 

2008, Model Transformation with Operational QVT [Macedo and Cunha, 2013]. 

AToM3 is a Python based tool for multi-paradigm modeling which stands for “A Tool for Multi-formalism 

and Meta-Modelling”'. The two main tasks of AToM3 are meta-modeling and model-transforming. Meta-

modelling refers to the description, or modelling of different kinds of formalisms used to model systems 

(although we have focused on formalisms for simulation of dynamical systems, AToM3's capabilities are 

not restricted to these.) Model-transforming refers to the (automatic) process of converting, translating 

or modifying a model in a given formalism, into another model that might or might not be in the same 

formalism. 

In AToM3, formalisms and models are described as graphs. From a meta-specification of a formalism, 

AToM3 generates a tool to visually manipulate (create and edit) models described in the specified 

formalism. Model transformations are performed by graph rewriting. The transformations themselves 

can thus be declaratively expressed as graph-grammar models. 

Some of the meta-models currently available are: Entity-Relationship, Deterministic Finite State 

Automata, Non-Deterministic Finite State Automata, Petri Nets, Data Flow Diagrams and Structure 

Charts. Typical model transformations include model simplification (e.g., state reduction in Finite State 

Automata), code generation, generation of executable simulators based on the operational semantics of 

formalisms, as well as behavior-preserving transformations between models in different formalisms. 

Atom3 is supported by a web based tool, but it has no standalone framework or any integration with a 

framework such as Eclipse [Lara and Vangheluwe, 2002]. 

Also, there are other model transformation languages and tools which are mostly under-research and 

academic studies. Some of them are listed below: 
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HOTs: Just as any other model can be created, modified, augmented by a transformation, a 

transformation model can itself be instantiated, modified and so on, by a so-called HOT. This uniformity 

has several benefits: especially it allows reusing tools and methods, and it creates a framework that can 

be applied recursively (since transformations of transformations can be transformed themselves) 

[Massito et al, 2009]. 

GReAT: It is a transformation language in the generic modeling environment (GME). GReAT language 

is a graphical language for the specification of graph transformations between Domain-Specific 

Modelling Languages (DSMLs). It consists of three sub-languages:  

 the pattern specification language; 

 the transformation rule language; 

 the sequencing or control flow language.  

Additionally, the input and the output languages of a transformation are defined in terms of meta-

models. GReAT is not a standalone tool; rather, it is used in conjunction with the Generic Modelling 

Environment. However, once a transformation has been developed, a standalone executable can be 

executed outside of GME [Balasubramanian et al, 2007]. 

Very detailed review of model transformation approaches and technologies is represented in paper. 

Authors consider all Model-to-Model transformation mentioned about and a number of other languages, 

namely Henshin, 

MOLA, SiTra, Stratego/XT,Tefkat,Tom,UML-RSDS, and VIATRA2 [Errata et al, 2015]. 

Related Papers 

Papers, related to software model transformation, can be divided to two classes, namely those which 

make strong contribution in transformation techniques and those that develop analytical tools for 

designing new and improving existing transformational approaches and techniques. 

Detail review of papers, devoting to designing transformation methods and techniques grounded on 

practical tools and environments is represented in paper [Chebanyuk and Markov, 2016a]. The result of 

this review is summarizing achievements of researches according MDE promising. List of MDE 

promising is also represented in paper [Chebanyuk and Markov, 2016a]. Analyzing this review, the 

requirements to analytical automated method for Model-to-Model transformations, that cover all MDE 

promising, were formulated.  

Also represent review of papers, making strong contribution in development of transformational 

techniques. 

Paper [Greiner et al, 2016] represents a case study dealing with incremental round-trip engineering of 

UML class models and Java source code.  
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Described approach tries to prevent information loss during round-trip engineering by using a so called 

trace model which is used to synchronize the Platform Independent and the Platform Specific Models. 

Furthermore, the source code is updated using a fine grained bidirectional incremental merge. Also, 

information loss is prevented by using Javadoc tags as annotations. Case model and code are changed 

simultaneously and the changes are contradicting, one transformation direction has to be chosen, which 

causes that some changes might get lost [Greiner et al, 2016]. 

The contribution of the survey [Seifermann and Groenda, 2016] is the identification and classification of 

textual UML modeling notations. During the survey, authors found a total of 31 textual UML notations. 

The classification is aimed to include the user’s point of view and support the notation selection in 

teams. In total, authors found 14 new notations compared to previous surveys: Alf, Alloy, AUML, Clafer, 

Dcharts, HUTN, IOM/T, Nomnoml, pgf-umlcd, pgf-umlsd, tUML, txtUML, UML/P, and uml-sequence-

diagram-dsl-txl. Authors presented each of the twenty categories in detail including objectively 

checkable conditions that cover the level of UML support, the editing experience, and the applicability in 

an engineering team. 

Paper [Wu, 2016] addresses the issue of generating metamodel instances satisfying coverage criteria.  

More specifically, this paper makes the following contributions: 

― ― A technique that enables metamodel instances to be generated so that they satisfy 

partition-based coverage criteria. 

― ― A technique for generating metamodel instances which satisfy graph properties. 

A metamodel is a structural diagram and can be depicted using the UML class diagram notation. Thus, 

the coverage criteria defined for UML class diagram can also be borrowed for metamodels. To facilitate 

the transformation from class diagrams with OCL constraints to Satisfiability Modulo Theories (SMT) 

formulas authors use a bounded typed graph as an intermediate representation [Wu, 2016]. 

Paper [Natschlager et al, 2016] presents concept for Adaptive Variant Modeling (AdaVM). AdaVM is a 

part of the AdaBPM framework for advanced adaptability and exception handling in formal business 

process models. In addition, AdaVM considers linking of elements, propagation of changes, and visual 

highlighting of differences in process variants. Authors showed that graph transformation techniques are 

well-suited for process variant management and that variants can be automatically created by a few 

graph transformation rules specifying concrete variations. Authors show that the adaptable approach is 

less complex regarding the type graph, source graphs, and the number of rules and application 

conditions. New ideas, expressed in proposed approaches, are (i) the support of variability by restriction 

and by extension with graph transformation techniques, (ii) linking and propagation of changes, (iii) 

individual blocking of elements/attributes, and (iv) visual highlighting of differences in process variants. 



International Journal “Information Theories and Applications”, Vol. 24, Number 1, © 2017 

 

68 

A review of mathematical foundations for providing realization of model transformation techniques is 

outlined in [Rabbi et al, 2016]. 

A review of metamodeling tools is represented in paper [Favre and Duarte, 2016] and several 

metamodeling frameworks are described. 

Task and Challenges 

To propose an approach and software tool for Model-to-Model transformation.  

Challenges: the proposed approach should:  

― be based on graph transformations to support easy modifying of transformation rules; 

― easily allow modifying transformation rules; 

― represent of a transformation rules from behavioral software models to class diagrams at 

metalevel;  

Designed software tool should automate the process of Model-to-Model transformation in IBM Rational 

Software Architect 7.5.5.2; 

Proposed Approach 

Step 1: Define transformation rules. These transformation rules serve as instructions to a transformation 

engine on how to transform a model. They reflect the mapping patterns between source and target 

models elements. A developer has to identify which elements of a source model correspond to which 

elements of a target model. 

Step 2:Set up an execution environment. Eclipse plugin with QVT-R script is integrated to IBM Rational 

Software Architect (IBM RSA). IBM RSA version, used in this paper is 7.5.5.2 and is based on Eclipse 

3.4 Ganymede. The tool to be used for Model-to-Model transformation is medini QVT. Medini QVT is a 

tool set for Model-to-Model transformations.  

Step 3: Create a transformation script in medini QVT. The transformation rules are defined using QVT-R 

language in medini QVT environment. QVT-R script consists of transformations, but it is customary to 

have a single transformation defined per one script. A transformation, in turn, considers a set of 

relations between elements of source and target software models. These relations define the patterns 

that are used to match model elements. Each relation touches of source and target domains. They 

specify model elements that are to be mapped into each other by binding their properties to variables 

that can be used in OCL expressions. Additionally, relations can have where and when clauses that 

specify conditions under which a relation holds. 

Step 4: Design source model in RSA environment. RSA is a great tool that provides modeling 

capabilities for a developer to create models. In a project considered in the previous step, create a 
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model. The best way to define elements of this model is to build a diagram. Create a necessary diagram 

and open a designer. Whenever you drag the notation elements onto the drawing surface the 

corresponding model elements are generated in a model container. 

Step 5: Execute the transformation. Now you can click on the command the launches a designed plugin. 

A “Transformation Definition” dialog appears. In a “QVT-R script” field type a path to a QVT-R script or 

use the “Browse…” button to choose it using File Explorer. In an “Input model” field type a path to a file 

containing the source model created in a previous step, or use the “Browse…” button to choose it using 

File Explorer. After that click “OK” button to launch a transformation. As a result, a target model file is 

created in the same folder as the source model file. 

Description of Transformation Rules 

A model transformation, in model-driven engineering, is an automated way of modifying and creating 

models. An example use of model transformation is ensuring that a family of models is consistent, in a 

precise sense which the software engineer can define. The aim of using a model transformation is to 

save effort and reduce errors by automating the building and modification of models where possible. 

Model transformations can be thought of as programs that take models as input. There is a wide variety 

of kinds of model transformation and uses of them, which differ in their inputs and outputs and also in 

the way they are expressed [Kuster, 2011]. 

A model transformation usually specifies which models are acceptable as input, and if appropriate what 

models it may produce as output, by specifying the metamodel to which a model must conform 

[Rebull et al, 2007]. 

Consider UML diagram or software model as a graph, where UML diagram objects are graph vertices 

and UML diagram links are edges of this graph. Thus, consider an analytical background for 

representing transformation rules. Denote software model(SM) as: SM(O,L), where 

 O – a set of software model objects. Objects are elements of software model (SM) notations 

that can be expressed as graph vertexes.  

 L – a set of links between O, that can be expressed as graph edges. Links are elements of 

software model notation that can be expressed as edges [Wiemann, 1995]. 

As in transformation operation there are two software models define them as initial ( initialSM ) and 

resulting ( resultingSM ).   initialSM  is a software model from which transformation is started. This model 

contains initial information for transformation. resultingSM  is the model which is obtained after 

transformation. Thus: 
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where 1O - set of initialSM objects, 2O - set of resultingSM  objects. 

           1L - set of initialSM  links.  2L - set of resultingSM links. 

Initial and resulting are types of software models. For example if transformation performed from use 

case to communication diagram we write transform _use caseSM  to collaborationSM . 

To represent transformation rules transformational grammar [Chomsky, 1957] is used. Transformation 

rules are syntax of this grammar [Chebanyuk and Markov, 2016a].  

Denote transformation operation as “  ” [Chomsky, 1957]. Thus, transformation operation from 

subSMI to subSMR is written as follows: 

initial resultingSM SM  (2) 

Expression (5) means that applying set of transformation rules, sub-graphs, formed from initial software 

models are transformed to sub-graphs of resulting software model.  

Considering graphs as a set of objects and links, the next expression can be written: 

1 2 1 2

( , ) ( , );
, , ,

OI LI OR LR
OI O OR O LI L LR L


   

 (3) 

Represent denotation for Behavioral Software Model (BSM). they were introduced in paper  

[Chebanyuk, 2015].  Table 1 illustrates denotation for different BSM object. 

XMI representation, based on abstract syntax tree concept, allows representation all UML diagrams in 

unified format.  

Using this fact let us formulate one-to-one transformation rule for all elements of different UML diagram 

notation, that mean the same role of business processes. UML diagrams objects that mean the same 

and have different names in different UML diagrams are transformed from source UML diagram 

to target one by means of mapping one-to-one. 

Table 2 shows that when objects play the same role in different BSM they are transformed one-to-one. 

They could be named the same (for example CY is transformed to SY ) or having different names (for 

example UCP is transformed to SM ). 
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Table 1. Denotations of BSM objects 

Denotation from the 
UML standard 

Denotation of 
the proposed 

approach 
Use case Collaboration Sequence 

1 2 3 4 5 

Object   - + + 

1 2 3 4 5 
Complex object 

(object with 
properties defined) 

COM
  - + - 

Actor A + + + 

Message   

+ (precedent is an 
equivalent of 

message) 
+ + 

Collection   - + + 
Subsystem SS + + + 
Multiplicity   + + - 
Waiting for 
response 

  - - + 

 

Table 2. One-to-one Model-to-Model transformation mappings 

Denotation from the 
UML standard 

Denotation of 
the proposed 

approach 
Use case (UC) Collaboration © Sequence (S) 

1 2 3 4 5 

Object   - C SO O  S CO O  

Complex object 
(object with 

properties defined) 
COM

  - COM S
O   - 

Actor A 
UC C

UC S

A A
A A




 C UC

C S

A A
A A




 S UC

S C

A A
A A




 

Message 
(precedent) 

 (P) 
UC C

UC S

P M
P M




 C UC

C S

M P
M M




 S UC

S C

M P
M M




 

Collection   - C SY Y  S CY Y  

Subsystem SS 
UC C

UC S

SS SS
SS SS




 C UC

C S

SS SS
SS SS




 S UC

S C

SS SS
SS SS
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Setting up execution environment 

The primary tool to be used for Eclipse plugin development that focuses on modeling software is IBM 

RSA. IBM Rational Software Architect is a modeling and development environment that uses the UML 

for designing architecture for C++ and JEE applications and web services. Rational Software Architect is 

built in the Eclipse open-source software framework and includes capabilities focused on architectural 

code analysis, C++, and MDD with the UML for creating applications and web services [IBM, 2015]. 

Used version is Rational Software Architect 7.5.5.2 that is based on Eclipse 3.4 Ganymede. Since RSA 

is Eclipse-based, it can take advantage of the market of third-party plugins for Eclipse, as well as 

plugins specifically for Rational tools. 

The tool to be used for Model-to-Model transformation is medini QVT [OMG, 2015], [QVT, 2016]. Medini 

QVT is a tool set for Model-to-Model transformations [Medini QVT, 2016]. The core engine implements 

OMG's QVT Relations standard, and is licensed under EPL. Medini QVT also includes tools for 

convenient development of transformations, such as a graphical debugger and an editor. These 

components are freely available for non-commercial use only. 

Medini QVT has the following features: 

 execution of QVT transformations expressed in the textual concrete syntax of the Relations 
language; 

 Eclipse integration; 

 editor with code assistant; 

 debugger to step through the relations; 

 trace management enabling incremental update during re-transformation. 

Key concept enabling incremental update as well as the transition from manual modeling to automation 

through transformations in the absence of traces. 

It is a challenge to integrate medini QVT into RSA since simply copying the plugins into the “plugins” 

folder will not make RSA discover them. The less efficient and safe solution is to use a separate Eclipse 

3.6 Helios distribution and install medini QVT in there from an update site. Then in RSA the folder with 

the Eclipse 3.6 distribution can serve as a local repository of plugins for RSA. By navigating to “Help” 

menu, and choosing “Software Updates…” option we can switch to “Available Software” tab and click 

“Add Site…” button. There we can point to an Eclipse distribution with medini QVT installed by clicking 

“Local…” button. Then in an appeared site option we can chose “QVT Cockpit Feature” and click 

“Install…”. After that it is a simple matter of clicking “Next” or “Finish”. 

The project is an Eclipse plugin project that has several dependencies. Among them are the following 

required plugins: 
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Table 3 Description of used Eclipse plugins to plug-in project dependencies 

Plugin name Plugin features 

1 2 

org.eclipse.ui Application programming interfaces for interaction with and 

extension of the Eclipse Platform User Interface. 

org.eclipse.core.runtime Provides support for the runtime platform, core utility methods and 

the extension registry. 

com.ibm.xtools.modeler.ui UML Modeler primary package. This package exposes the entry 

point for the UML Modeler API though UMLModeler static class. 

de.ikv.medini.qvt.plugin Contains QVT-R transformation engine. 

 

 

Table 4. Description of imported packages plug-in project dependencies 

Package name Package features 

com.ibm.xtools.modeler.ui The UML Modeler API consists of a single static utility class, 

UMLModeler, and of several other classes and interfaces that are 

accessible from UMLModeler. 

com.ibm.xtools.uml.ui.diagram This package provides the UML modeling API that enables UML 

diagrams to be created and modified. 

com.ibm.xtools.umlnotation UML Notation meta-model primary package. 

org.eclipse.emf.common.util Provides basic utilities. 

org.eclipse.emf.ecore Provides an API for the Ecore dialect of UML. 

org.eclipse.emf.ecore.resource Provides an API for modeling abstract persistent resources. 

org.eclipse.emf.ecore.resource.impl Provides an implementation of the resource API. 

org.eclipse.emf.ecore.xmi.impl Provides implementation of XMI utility 

org.eclipse.gmf.runtime.notation Provides a standard EMF notational meta model. 

org.eclipse.uml2.uml Provides an API for an EMF-based implementation of the UML 

2.5 metamodel for the Eclipse platform 
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Desciption of Medini QVT transformation script 

Let’s consider a use case model first. Just as a class model use case model has a root level contained 

called Package. Naturally it can be mapped into a Package within a class model. Then we might 

consider an Actor. Actor can be mapped into a Class that implements an Interface. This implementation 

reflects a Realization relationship element. Then there is a UseCase. Being connected to an Actor 

through the Association relationship it can represent an Operator owned by an Interface. 

The following table summarizes the rules of transformation from use case model to class model: 

 

 

Table 5. Transformation rules one-to-one from UML Use Case Diagram to class one 

Use Case Model Class Model 

Package Package 

Actor Class, Interface, Realization 

UseCase Operation 

 

 

The second case of a source model is communication model. Yet again we consider a Package element 

that is mapped into a similar Package element in a target class model. Then a Lifeline of types Actor, 

Class, and Component can be mapped into a Class of a class model. Then a Message passed between 

lifelines can be mapped to an Operation inside of a Class. 

 The following table summarizes the rules of transformation from communication model to class model: 

 

 

Table 5. Transformation rules one-to-one from UML Communication Diagram to class one 

Communication Model Class Model 

Package Package 

Lifeline (Actor, Class, Component) Class 

Message Operation 
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Description of QVT-R Script 

Here is a short overview of the integral classes written for a plugin application to support its functionality. 

A custom class that represents a transformation engine is called Medini QVTTransformationEngine and 

it implements custom TransformationEngine interface. It relies on third-party EMFQvtProcessorImpl 

class to evaluate QVT transformation. An abstract custom class ModelTransformationTemplate 

conforms to a Template design pattern. It encapsulates a skeleton of an algorithm that describes the 

model transformation process. The algorithm consists of four steps: 

 prepare source model placeholder; 

 prepare target model placeholder; 

 perform transformation; 

 obtain target model. 

These four steps are represented by methods and these methods are invoked in a template method 

named as transformSourceModel of a ModelTransformationTemplate class. 

A custom concrete class that extends ModelTransformationTemplate is called Medini 

QVTRsaDomModelTransformation. The “Medini QVT” part of a class name means that the 

transformation process is performed by this model transformation tool. The “Rsa” part of the name 

means that the source model is provided by the Rational Software Architect and a diagram in a target 

model is created using this tool also. The “Dom” part in the name specifies that the DOM method of 

XML editing is used. 

 

transformation usecase2class (source : uml, target : uml) { 
 top relation model2model { 
  theName : String;   
  checkonly domain source s: uml::Package { 
   name = theName 
  }; 
  enforce domain target t: uml::Package { 
   name = 'ClassModel_from_' + theName 
  };   
  where { 
   actor2class(s, t); 
  } 
 } 
 relation actor2class { 
  modelName : String;   
  checkonly domain source sourcePackage: uml::Package { 
   packagedElement = actor: uml::Actor { 
    name = modelName 
   } 
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  };   
  enforce domain target targetPackage: uml::Package { 
   packagedElement = class: uml::Class { 
    name = modelName + 'Impl' 
   }, 
   packagedElement = interface: uml::Interface { 
    name = modelName 
   }, 
   packagedElement = realization: uml::Realization { 
    client = client -> append(class), 
    supplier = supplier -> append(interface) 
   } 
  };   
  where { 
   usecase2operation(actor, sourcePackage, interface); 
  } 
 } 
             relation usecase2operation { 
  usecaseName : String;   
  checkonly domain source actor : uml::Actor { 
  };   
  checkonly domain source s : uml::Package { 
   packagedElement = usecase : uml::UseCase { 
    name = usecaseName 
   }, 
   packagedElement = association : uml::Association { 
    ownedEnd = usecaseEnd : uml::Property { 
     name = usecaseName.firstToLower() 
    }, 
    ownedEnd = actorEnd : uml::Property { 
     name = actor.name.firstToLower() 
    } 
   } 
  };   
  enforce domain target interface : uml::Interface { 
   ownedOperation = operation : uml::Operation { 
    name = usecaseName 
   } 
  }; 
 } 
} 
 

The following listing describes how to transform a communication model into class model: 

transformation communication2class (source : uml, target : uml) { 
 top relation package2package { 
  theName : String;   
  checkonly domain source s : uml::Package { 
   name = theName, 
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   packagedElement = collaboration : uml::Collaboration { 
   } 
  }; 
  enforce domain target t : uml::Package { 
   name = 'ClassModel_from_' + theName 
  };   
  where { 
   lifeline2class(collaboration, s, t); 
  } 
 } 
 relation lifeline2class { 
  modelName : String;   
  checkonly domain source collaboration : uml::Collaboration { 
  };   
  checkonly domain source sourcePackage : uml::Package { 
   packagedElement = lifeline : uml::Classifier { 
    name = modelName 
   } 
  };   
  enforce domain target targetPackage : uml::Package { 
   packagedElement = class : uml::Class { 
    name = modelName 
   } 
  }; 
             when { 
   lifeline.oclIsKindOf(uml::Actor) or lifeline.oclIsKindOf(uml::Class); 
  }   
  where { 
   message2operation(lifeline, collaboration, class); 
  } 
 }  
 relation message2operation { 
  operationName : String;   
  checkonly domain source lifeline : uml::Classifier { 
  };   
  checkonly domain source collaboration : uml::Collaboration { 
   ownedBehavior = interaction : uml::Interaction { 
    ownedConnector = link : uml::Connector { 
     end = endPoint : uml::ConnectorEnd { 
      role = attribute 
     } 
    }, 
    message = theMessage : uml::Message { 
     name = operationName, 
     connector = link 
    } 
   }, 
   ownedAttribute = attribute : uml::Property { 
    type = lifeline 
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   } 
  };   
  enforce domain target class : uml::Class { 
   ownedOperation = operation : uml::Operation { 
    name = operationName 
   } 
  };   
  when { 
   link.allOwnedElements()->at(2) = endPoint; 
   not class.allOwnedElements() ->  
   select(x | x.oclIsKindOf(uml::Operation)) ->  
   collect(y | y.oclAsType(uml::Operation)) ->  
   exists(o | o.name = operationName); 
  } 
 } 
} 

Execution example 

Explain how to perform the next points of proposed approach by means of designed script. 

Figure1 reflects a dialog window that is part of the plugin and serves as a graphical user interface for the 

interaction with a user. Such dialog can be created using a standard Eclipse plugin development project. 

It is better to execute transformations described by a QVT-R script in an environment that is used for the 

creation of models. A modeling tool for this purpose is IBM Rational Software Architect. The version 

used in this paper is IBM RSASE 7.5.5.2. Since Rational Software Architect does not support UML-to-

UML transformations there is a need to develop a plugin for the automation of such a task. The plugin 

has a dependency on another plugin that contains medini QVT transformation engine. So there is a 

need to integrate the engine into Rational Software Architect.  

Since medini QVT 1.7 is based on Eclipse 3.6 Helios and IBM Rational Software Architect 7.5.5.2 is 

based on Eclipse 3.4 Ganymede the two of them are incompatible. The solution is to install medini QVT 

into a separate Eclipse 3.6 distribution. Then using this distribution create a feature that would include a 

plugin containing transformation engine. After that create a local update site and add created feature 

into it. This update site can be used by Rational Software Architect to install created feature and 

therefore integrate desired transformation engine for the use by other plugin.  

The plugin that transforms UML models with a help of medini QVT transformation engine requires 

special project structure in order to transform models. Let’s a consider a project folder in RSA 

environment where the input and output of a transformation are going to be stored. This folder should 

have three subfolders called “qvt”, “temp” and “traces”. The “qvt” folder is supposed to contain 

necessary QVT-R scripts. The “temp” folder is supposed to contain temporary file placeholders for 

source and target models. The “traces” folder will contain the files that are called traces. Traces are 
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generated after the transformation and they store the records of how the transformation took place and 

which elements participated in a transformation for the creation of target model elements. 

The first input field requires a path to a script that describes the rules for the transformation. This must 

be a QVT-R script. The second field requires a path to an input model to be transformed. The 

“Browse…” buttons help to find necessary file by opening a file dialog. The “OK” button starts the 

transformation. “Cancel” button is self-explanatory. 

In order to provide an input model into the process of transformation a communication diagram is built 

based on the plugin’s architecture. 

 

 

Figure 1. Plug-in window 

 

 

Figure 2. Communication diagram 
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Communication diagram, represented in Figure 2 is a source model. Particularly there is a “User” actor 

and three classes “Environment”, “Transformer” and “Modeler”. Each of them have their own type. The 

interaction starts with the User lifeline being connected to the Environment lifeline, and in turn 

Environment is connected to the Transformer and Modeler lifelines. Connections are represented by the 

message paths through which the messages can be passed back and forth. Specifically, User can send 

such messages as “chooseModel”, “chooseScript” and “transform”. Environment can send “evaluateQvt” 

message to Transformer and “createDiagram” message to Modeler. 

 

The obtained target model represents a class model with generated class diagram. 

 

 

Fig. 3. Class diagram 

 

In general, there are apparent relationships between lifelines being mapped into classes and messages 

being mapped into operations. 

 

Conclusion 

An approach for Model-to-Model transformation and software tool for class diagram designing are 

represented in this paper. All variants for one-to-one transformation for UML Use Case, Communication 

and Sequence diagrams are considered in tables 1 and 2. Such transformations provide a foundation 

for implementing QVT-R scripts in Medini QVT. The template for QVT-R script for performing one-to-one 

transformation is proposed in this paper. Using these foundations and QVT-R script templates for one-

to-one transformation other transformations can be implemented.  An approach for implementation of 

Model-to-Model transformation when medini QVT plug-ins are built in the IBM Rational Software 

Architect 7.5.5.2 is represented. Source and target software models are opened in IBM RSA 7.5.5.2.  

Designed software tool allows automating the task of creating a class diagrams from the communication 

diagrams. Flexibility of designed tool allows changing rules of script and scripts themselves (fig. 1) for 

interoperating with software models of different types. It allows to high skill specialist to formulate 

specific transformation rules that reflect peculiarities of problem domain and experience of a specialist. 
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Other advantage of designed plug-in that source and target software models are defined as external 

parameters for plug-in execution. 

Implementing this plugin-in into software development life cycle increases the effectively of all software 

development where Model-to-Model transformation is performed.  

 

Further Research 

Design an approach and software tool, supporting Model-to-Model transformation, integrating all types 

of transformation rules, namely many-to-many, one-to-many, and many-to-one. It allows to realize 

ideas, presented in the papers [Chebanyuk, 2014a] and [Chebanyuk, 2014b]. Integrate transformation 

from Communication diagram to class one and verification of obtained class diagram by means of 

analytics, represented in [Chebanyuk and Markov, 2016b]. 
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