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INDUCTIVE MODELING METHOD GMDH IN THE PROBLEMS OF DATA MINING  

Yuriy Zaychenko, Galib Hamidov 

 

Abstract: The problem of constructing unknown dependencies (laws) in huge data warehouses is 

considered.  For its solution inductive modeling method- so called Group Method of Data Handling 

(GMDH) is suggested. This method enables to construct automatically optimal models of variables 

based on experimental data stored in data warehouses. Unlike other modeling methods GMDH enables 

to find out the structure of the unknown model and solves the problem of not parametric, but structural 

identification. Additionally for finding unknown laws in incomplete and unreliable data under uncertainty 

fuzzy GMDH is suggested enabling to construct fuzzy models. The experimental investigations of the 

suggested methods for models identification in Data Mining problems are presented and the obtained 

results discussed. 

Keywords: Data Mining, GMDH, fuzzy, model identification. 
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Introduction 

Last year’s problems of Data Mining in data bases (DB) have become very crucial in IT-applications.  

Especially it refers to big DB, so-called data warehouses where mountains of raw data are accumulated  

and hidden laws in these data are to be detected and corresponding models to be constructed 

[Barsegyan, 2008; Duke, 2001]. 

 Previously several classes of methods were developed for finding unknown dependencies in data, in 

particularly statistical methods: ARMA, Logit and Probit models, ARCH and GARCH methods and 

neural networks. But they have drawbacks:  statistical methods solve only problems of parametric 

identification and don’t solve structural identification while neural networks allow to determine model 

structure but in an implicit form. The model structure is hidden in neural weights and its analytical form is 

unavailable.  

Therefore the development of methods for structural models identification constitute important problem 

in DM.  The main goal of this paper is development and investigation of methods for constructing 

models in data accumulated in data warehouses. For this goal the method of inductive modeling- Group 

Method of Data Handling (GMDH) is suggested and investigated [Ivakhnenko, 1985]. 
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For finding unknown laws in data under uncertainty new version of GMDH – Fuzzy GMDH is suggested 

and explored [Zaychenko, 2003; Zaychenko, 2006]. Fuzzy GMDH enables to operate with incomplete or 

indefinite initial data and constructs fuzzy models whose coefficients are fuzzy. 

The significant property of GMDH is that it may operate with high dimensional data (with many 

variables) and so-called “short samples” when the number of model coefficients m is greater than 

sample size N. This is achieved due  to specificity  of  GMDG algorithm as at each step of it a set of so-

called partial models are constructed consisting only of two variables instead of n initial input variables 

like other modeling methods. This enables to cut substantially the dimension of model and decrease the 

time for its construction. This advantage rises with the increase of model complexity: the greater is 

model dimension (number of variables), the greater is cut in computational time for its construction as 

compared with conventional modeling methods. 

1. Problem Formulation 

Consider the problem of model construction.  A set of initial data is given, inclusive input variables 

 1 2( ), ( ),..., ( )X X X N and output variables  1 2( ), ( ),..., ( )Y Y Y N , where   1 2, ,..., nX x x x  is  -n-tuple 

vector,  N is a number of observations . 

The task is to synthesize an adequate forecasting model  1 2, ,..., nY F x x x ,   and besides, the 

obtained model should have the minimal complexity. In particularly, while solving forecasting problem as 

an output variable Y a forecasting model is used    1( ),..., ( )X N K f X X N  , where  K  is a value 

of   a forecasting interval. 

The constructed model should be adequate according to the initial set of data, and should have the 

least complexity (Figure 1). 

 

 

Figure 1. Graphical representation of the problem 
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The distinguishing features of the problem are the following:  

1. Form of functional dependence is unknown and only model class is determined, for example, 

polynomial of any degree or Fourier time series. 

2. Short data samples;  

3. Time series ( )ix t  in general case is non- stationary.  

In this case the application of conventional methods of statistical analysis (e.g. regression analysis ) is 

impossible and it’s necessary to utilize methods based on computational intelligence (CI). To this class 

belongs Group Method of Data Handling (GMDH) developed by acad. A. Ivakhnenko [Ivakhnenko, 

1985] and extended by his colleges. GMDH is a method of inductive modeling. The method inherits 

ideas of biological evolution and its mechanisms:   

1.  Сrossing-over of parents and offspring generation; 

2. Selection of the best offsprings. 

GMDH method belongs to self-organizing methods and allows to discover internal hidden laws in the 

appropriate object area. 

The advantages of GMDH algorithms are the possibility of constructing optimal models with a small 

number of observations and unknown dynamics among variables.  This method doesn’t demand to 

know the model structure a priori, the model is constructed by algorithm itself in the process of its run. 

The basic principles of GMDH 

Let’s remind the fundamental principles of GMDH [3, 4-6]. The full interconnection between input ( )X i  

and output  ( )Y i  in the class of polynomial models may be presented by so-called generalized 

polynomial of Kolmogorov- Gabor: 

 

0 1
1 1

...
n

i ii

n n

ij i j ijk i j k
j i j i j i k j

Y a a x a x x a x x x


    

       
 

(1)

 

where all the coefficients 0, , ,i ija a a   are unknown.  

 

While constructing model (search coefficients values) as a criterion of adequacy the so-called regularity 

criterion (mean squared error- MSE) is used 
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12 2
1
( ( ))

N
y f X
i iN i

   


 (2)

where N is  a sample size  ( number of observations). 

 

It’ s demanded to find minimum 2 .  

GMDH method is based on the following principles [Ivakhnenko, 1985, Zaychenko, 2003]. 

The principle of multiplicity of models. There is a great number of models providing zero error on  a 

given sample . It’s enough simply to raise the degree of the polynomial model. If N nodes of 

interpolation are available, then it’s possible to construct the family of models each of which gives zero 

error on experimental points 2 0  . 

The principle of self-organization. Denote S as model complexity. The value of an error depends on 

the complexity of a model. As the the level of complexity S grows the error first drops, attains minimum 

value  and then begins to rise (see Fig. 2).  

We need to find such level of complexity for which the error would be minimal.  In addition if to take into 

account the action of noise we may make the following conclusions concerning  :  

1. With the increase of noise the optimal complexity  2
0 argmins  shifts to the left; 

2. With the increase of noise level the value of optimal criterion min 2 ( )s  grows. 

 

 

Figure 2. Dependence of criterion 2  on model complexity S  
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Theorem of incompleteness by Geodel: In any formal logical system there are some statements 

which cannot be proved or refuted using the  given system of axioms and staying in the margins of this 

system. That to prove or refute such statement one need go out this system and use some external 

information (meta information) which is called “external complement”. In our case as external 

information stands additional sample of data which wasn’t used for the finding unknown coefficients of  

the model. 

 So one way to overcome incompleteness of sample is to use principle of external complement which 

means that the whole sample should be divided into two parts – training subsample and test subsample. 

The search of optimal model is performed in such a way:  

 At the training sample  trainN  the  estimates  0, , ,i ija a a  are determined; 

 At the test sample testN  the best model is selected. 

The ideas of computational method GMDH 

For each pair of inputs  ix  and jx  so-called partial descriptions are being built (all in all 2
nC ) of the 

form:  

 

0( , )Y x x a a x a x
s i j i i j j

   
, 21.. ns C   (linear); 

or 2 2
0( , )Y x x a x a x a x a x x a x

s i j i j j ii i ij i j jj j
       , 21.. ns C  (quadratic). 

(3)

 

1. Determine the coefficients of these model using LSM (least square method) at the training sample 

(i.e. find estimates 0 1 11, ,..., ,..., , ,..., ,...,j N ij NNa a a a a a a . 

2. Further at the test sample for each of these models calculate the value of regularity  criterion : 

 

2 2

1

1
[ ( ) ( )]

testхN

s s
itest

Y k Y k
N




    (4)

 

(where ( )Y k is real output value of the k-th point of test; ( )Y k
s

 is  a value of  this criterion on k-th 

point obtained by model, testN  is a number of points at the test sample); 

as alternate criterion “unbiasedness” criterion may be used: 
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 2

11 2

1 * **
N

ub k k
k

N y y
N N 

 
   (5)

 

where the sample is also divided in two parts 1N  and 2N , **
ky   are outputs  of the model built on the 

subsample 1N , **
ky  are outputs   of model built on subsample  2N , 1 2N N N  .  

3. Determine F ( this number is  called a freedom of choice) best models using one of these criteria. The 

selected models iy are then transferred to the second row of model construction. We search 

coefficients of new partial descriptions: 

2 2 2 2 2 2 22 2
0 1 2 3 4 5      ( ) ( ) ( ) ( ) ( ) ( ) ( )( , )z x x a a y a y a y a y y a y

I i j i j i i j j
 

The process at the second row runs in the same way . The selection of the best models is carried out 

similarly, but  2 1F F . The process of rows construction repeats more and more till  MSE ( regularity 

criterion ) falls. If at the m-th layer occurs the increase of the error 2 the algorithm stops.  In this case 

find the best model at the preceding layer and then moving backward by its connections find models of 

preceding layer and successfully passing all the used connections at the end we’ll reach the first layer 

and   find the analytical form of the optimal model ( with minimal complexity). 

2. Fuzzy GMDH. Principal ideas. Interval model of regression 

Classical GMDH has some drawbacks: 

 

1. GMDH utilizes least squared method (LSM) for finding the model coefficients but matrix of linear 

equations may be close to degenerate and the corresponding solution may appear non-stable and 

very volatile. Therefore,  the special methods  for regularization  should be used; 

 

2.  after application of GMDH point-wise estimations are obtained but in many cases it’s needed find 

interval value for coefficient estimates; 

 

3. GMDH doesn’t work in case of incomplete or fuzzy input data.  

Therefore, in last 10 years the new variant of GMDH – fuzzy GMDH was developed and refined which 

may work with fuzzy input data and is free of classical GMDH drawbacks [Zaychenko, 2003; 

Zaychenko, 2006]. 
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In works [Zaychenko, 2003; Zaychenko, 2006] the linear interval model regression was considered : 

0 0 1 1 ... n nY A Z A Z A Z     (6)

where iA  is a fuzzy number of triangular form described by pair of parameters  ,i i iA c , where i

is interval center, ic is its width, 0ic   

Then Y is a fuzzy number, parameters of which are determined as follows: 

the interval center 

Tz z
y i i

     , (7)

 

the interval width 

Tc c z c z
y i i
   . (8)

 

In order the interval is correct it’s necessary that real value of output should belong to the interval of 

uncertainty described by the following constraints: 

 

T Tz c z y

T Tz c z y





   

   

. (9)

 

For example, for the partial description of the kind  

 

2 2
0 1 2 3 4 5( , )i j i j i j i jf x x A A x A x A x x A x A x       (10)

 

it’s necessary to assign in the general model  (6) 

 

0 1z  , 1 iz x 2 jz x 3 i jz x x 2
4 iz x 2

5 jz x  
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Let the training sample be 1 2{ , ,..., }Mz z z , 1 2{ , ,..., }My y y . Then for the model (10) to be adequate it’s 

necessary to find such parameters   1, ,i ic i n  , which satisfy the following inequalities: 

 

1, ,
T T

k k k
T T

k k k

z c z y
k M

z c z y



       

 . (11)

 

Let’s formulate the basic requirements for the linear interval model of partial description of a kind (10). 

It’s necessary to find such values of the parameters ( , )i ic  of fuzzy coefficients for which: 

1. Real values of the observed outputs ky  would drop in the estimated interval for kY ; 

2. The total width of the estimated interval for all sample points would be minimal. 

These requirements lead to the following linear programming problem: 

 

2 2
0 1 2 3 4 5

1 1 1 1 1

min(
M M M M M

ki kj ki kj ki kj
k k k k k

С M C x C x C x x C x C x
    

          , (12)

 

under constraints: 

 

2 2
0 1 2 3 4 5 0 1 2

2 2
3 4 5 k

(

) y

ki kj ki kj ki kj ki kj

ki kj ki kj

a a x a x a x x a x a x С C x C x

С x x С x С x

        

   
 (13)

 

2 2
0 1 2 3 4 5 0 1 2

2 2
3 4 5 k

(

) y

ki kj ki kj ki kj ki kj

ki kj ki kj

a a x a x a x x a x a x С C x C x

С x x С x С x

        

   
 

Mk ,1  ,  

0 0 5, ,pC p  , 

(14)

 

where k is an index of a point. 
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As we can easily see the task (12) – (14) is linear programing (LP) problem. However, the 

inconvenience of the model (12) – (14) for the application of standard LP methods is that there are no 

constraints of non- negativity for variables i . Therefore for its solution it’s reasonable to pass to the 

dual LP problem by introducing  dual variables { }k  and { }k M  , 1,k M . Using simplex- method for 

the dual problem  and after finding the optimal values for the  dual variables { }k  the optimal solutions 

( , )i ic  of the initial  direct problem will be also found [Zaychenko, 2003; Zaychenko, 2006]. 

3. FGMDH with fuzzy input data for triangular membership functions 

The generalization and further development of the considered FMGH is Fuzzy GMDH where fuzzy are 

not only model coefficients but input data as well. Below the correspondent mathematical model is 

presented. [Zaychenko, 2008]  

3.1. The form of math model for triangular MF 

Let’s consider the linear interval regression model with fuzzy inputs which generalies  the model (6) : 

 

0 0 1 1 ... n nY A Z A Z A Z    , (15)

 

where Ai – fuzzy number of triangular shape, which is described by threes of parameters 

( , , )i i i iA A a A , where ia  – center of the interval, iA  – its upper border, iA  - its lower border.  

Current task contains the case of symmetrical membership function for parameters Ai, so they can be 

described via pair of parameters ( ia , ic ). 

i i iA a c  , i i iA a c  , ic  – interval width, ic  ≥ 0, 

Zi – also fuzzy numbers of triangular shape, which are defined by parameters ( , , )i i iZ Z Z


, iZ - lower 

border, iZ


- center, iZ - upper border of fuzzy number. 

Then Y – fuzzy number, which parameters are defined as follows:  

Center of the interval: 

*i iy a Z


, 

Deviation in the left part of the membership function: 

( * ( ) )ii i i iy y a Z Z c Z   
 

, thus 
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Lower border of the interval: 

 


( * )ii i iy a Z c Z  (16)

 

Deviation in the right part of the membership function: 

( * ( ) )i ii i i i i i i i iy y a Z Z c Z a Z a Z c Z       
   

, so 

 

Upper border of the interval: 

 


( * )i i i iy a Z c Z  (17)

For the interval model to be correct, the real value of input variable Y should lay in the interval got by the 

method workflow. 

It can be described in such a way:  

1

( * )

( * ) , ,

iki i ik k

i ki i ik k

a Z c Z y

a Z c Z y k M

  


  






  (18)

 

Where Zk=[ Zk]i  is input training sample, yk –known output values, Mk ,1 , M – number of 

observation points.  

So, the general requirements to estimation linear interval model are to find such values of parameters 

( , )i ia c  of fuzzy coefficients, which enable: 

a) Observed values  ky  lay in estimation interval for kY ; 

b) Total width of estimation interval is minimal. 

These requirements can be redefined as a task of linear programming: 

1,
min ( ( * ) ( * ))
i i

M

ii i i i i i ia c
k

a Z c Z a Z c Z


    
 

 (19)

under constraints:  

1

( * )

( * ) , ,

iki i ik k

i ki i ik k

a Z c Z y

a Z c Z y k M

  


  






  (20)
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3.2. Formalized problem formulation in case of triangular membership functions 

Let’s consider partial description  

2 2
0 1 2 3 4 5( , )i j i j i j i jf x x A A x A x A x x A x A x       (21)

 

Then math model (19)-(20) takes the form 

0 1 1 2 2
1 1 1 1

3 3 4
1 1 1

2 2
4 5 5

1 1 1

2 2 2

2 2

2 2 2

,
min ( ( ) ( )

( ( ) ( )) ( )

( )

i i

M M M M

ik jkik jkik jka c
k k k k

M M M

jk ik ikjk ik ikik jk ik jk ik
k k k

M M M

jk jkik jk jk
k k k

Mc a x x c x a x x c x

a x x x x x x c x x a x x x

c x a x x x c x

   

  

  

      

       

   

   

  

 

 

    

  
)

 (22)

with the following  conditions:   

0 1 2 3

2 2
4 5 0 1

2 2
2 3 4 5

2 2

( ( ) ( ) )

( ( ) ) ( ( ) )

ik jk jk ikik jk jk ik ik jk

ik jkik ik ik jk jk jk ik

jk ik jk ik jk k

a a x a x a x x x x x x x x

a x x x x a x x x x c c x

c x c x x c x c x y

        

         

    

     

      

    
 

0 1 2 3 4

2 2
5 0 1 2 3

2 2
4 5

2

2

( ( ) ( ) ) ( (

) ) ( ( ) )

jk ik ikik jk ik jk jk ik ik jk ik

jkik ik jk jk jk ik jk ik jk

ik jk k

a a x a x a x x x x x x x x a x x

x x a x x x x c c x c x c x x

c x c x y

        

         

 

      

        

 
 

0 0 5, ,lc l  . 

(23)

As we can see, this is the linear programming problem, like the problem (12)-(13)for  non-fuzzy inputs 

but there are still no limitations for non-negativity  of variables ia ,  so we need go to dual problem, 

introducing dual variables  k  and  k M  . 

Write down dual problem: 

1 1

max( )
M M

k k M k k
k k

y y 
 

     (24)

Under constraints: 

1 1

0
M M

k M k
k k

 
 

    

1 1 1
( )

M M M

ik ikik ikk M k
k k k

x x x x 
  

        

(25)
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1 1 1
( )

M M M

jk jkjk jkk M k
k k k

x x x x 
  

        

1

1

1

( ( ) ( ) )

( ( ) ( ) )

( ( ) ( ))

M

jk ikik jk jk ik ik jk k M
k

M

jk ikik jk jk ik ik jk k
k

M

jk ikjk ikik jk
k

x x x x x x x x

x x x x x x x x

x x x x x x












     

       

   







     

     

 

 

2 2

1 1 1

2 2( ( ) ) ( ( ) ) ( )
M M M

ik ikik ikik ik ik k M ik ik ik k ik
k k k

x x x x x x x x x x x 
  

                 
 

2 2

1 1 1

2 2( ( ) ) ( ( ) ) ( )
M M M

jk jkjk jkjk jk jk k M ik jk jk k jk
k k k

x x x x x x x x x x x 
  

                 
 

1 1

2
M M

k M k
k k

M 
 

    

1 1 1

2
M M M

ik k M ik k ik
k k k

x x x 
  

       
 

1 1 1

2
M M M

jk k M jk k jk
k k k

x x x 
  

       
 

1 1 1
2

M M M

ik jk k M ik jk k ik jk
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(26)

0k   , 0k M   , 1,k M  (27)

 

The task (24)-(27) can be solved using   simplex-method. Having optimal values of dual variables  k , 

 k M  , we easily obtain the optimal values of desired variables ic , ia , 0 5 ,i , and also a desired 

fuzzy model for given partial description. 
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4. The description of fuzzy algorithm GMDH 

Let’s present the brief description of the algorithm FGMDH [Zaychenko, 2006]. 

1. Choose the general model type by which the sought dependence will be described. 

2. Choose the external criterion of optimality (criterion of regularity or non --biasedness ). 

3. Choose the type of partial descriptions (for example, linear or quadratic one).  

4. Divide the sample into training trainN  and test testN  subsamples. 

5. Put zero values to the counter of model number k and to the counter of rows r (iterations number ). 

6. Generate a new partial model kf  (10) using the training sample. Solve the LP problem (12) – (14) or 

(22)-(23) and find the values of parameters i , iс . 

7. Calculate using test sample the value of external criterion ( ( )r
ubkN or 2( )( )k r ). 

8. 1k k  . If 2
Nk C  for r=1or 2

Fk C  for r>1, then 1k  , 1r r   and go to step 9, otherwise go 

to step 6. 

9. Calculate the best value of the criterion for models of r-th iteration. If 1r  , then select  F best 

models and assigning 1r r  , 1k  ,  go to step  6 and execute   (r+1)-th iteration otherwise, go to 

step 10.  

10. If 1( ) ( )ub ubN r N r      or 2( )( )k r ≥ 2
1

( ) ( )k r  , then go 11, 

11. Otherwise select F best models and assigning 1r r  , 1k  , go to step 6 and execute (r+1) 

iteration. 

12. Select the best model out of models of the previous row (iteration) using external criterion.  

Starting from this model and moving backward by its connection to the models of previous row and 

successively passing the models of all previous rows by corresponding connections at the last step 

reach the models of the first row. Having made corresponding reverse substitutions of variables we find 

the final best model in initial variables  1 2 , ,..., nY F x x x . 

Thus, fuzzy GMDH allows to construct fuzzy models and has the following advantages: 

1. The problem of ill- conditionality of matrix of normal equalities is absent in fuzzy GMDH unlike classic 

GMDH as the least squared method isn’t used for optimal model determination. The problem of 

optimal model determination is transferred to the problem of linear programming, which is always 

solvable. 

2. There is interval regression model built as the result of method work unlike GMDH which constructs 

point-wise models. And the interval width enables to estimate the accuracy of the found model. 

3. There is a possibility of the obtained model adaptation. 
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5. The application of GMDH for forecasting at the stock exchange   

For estimation of efficiency of the suggested FGMDH method with non-fuzzy and fuzzy inputs the 

corresponding software kit was elaborated and numerous experiments of financial markets forecasting 

were carried out.  For the experiments the stock prices of different shares at the Stock exchange “RTS” 

were chosen. Some of them are presented below  

Experiment 1. RTS-2 index forecasting (opening price) 

There were 5 fuzzy input variables in this experiment; they were price on shares of “second echelon” 

Russian energetic companies, which are included to RTS-2 index computation list: 

BANE – shares of “Башнефть” joint-stock company, 

ENCO – shares of “Сибирьтелеком” joint-stock company, 

ESMO – shares of “ЦентрТелеком” joint-stock company, 

IRGZ – shares of “Иркутскэнерго” joint-stock company, 

KUBN – shares of “Южтелеком” joint-stock company. 

Output variable is the value of RTS-2 index (opening price) for the same period (03.04.2006 – 

18.05.2006).  

Sample size – 32 values. 

Training sample size – 19 values (optimal size of training sample for current experiment).  

The following results were obtained: 

1. For triangular membership function 

Criterion for this experiment was MSE=0,061787 

The corresponding results are presented at the Figure 3. 

 

 
Figure 3. Experiment 1 result for triangular MF and normalized values of input variables 
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a) For non-normalized input data 

Criterion value for this experiment was: 

MSE = 6,407928 

MAPE =0,24% 

 

2. For Gaussian membership function (optimal level α=0,85) 
а) For normalized input data 

Criterion value: MSE = 0,033097. 

The corresponding results are presented at the Figure 4. 

 

 

Figure 4. Experiment 1 result for Gaussian MF and normalized values of input variables 

 

b) For non-normalized input data 

Criterion value:  MSE = 3,432511 MAPE =0,13% 

 

 
Figure 5. Experiment 1 result for Gaussian MF and non-normalized values of input variables 
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The total results for triangular and Gaussian MF are presented in the table 1.As we can see from the 

presented results of experiment 1, forecasting using triangular and Gaussian membership functions 

gives good results. Results of experiments with Gaussian MF are better than results of experiments with 

triangular MF. 

Table 1. Forecasting results at RTS stock exchange 

For non-normalized data Triangular MF Gaussian MF 

MSE 0,061787 0,033097

For normalized data Triangular MF Gaussian MF 

MSE 6,407928 3,432511

MAPE 0,24% 0,13%

 

6. The comparison of GMDH, FGMDH and FGMDH with fuzzy inputs 

In the next experiments the comparison of the suggested method FGMDH with fuzzy inputs with known 

methods: classical GMDH and Fuzzy GMDH was performed 

Experiment 2. Forecasting of RTS index (opening price)  

Current experiment contains 5 fuzzy input variables, which are the stock prices of leading Russian 

energetic companies included into the list of RTS index calculation: 

Output variable is the value of RTS index (opening price) of the same period (03.04.2006 – 18.05.2006).  

Sample size – 32 values. 

Training sample size – 18 values (optimal size of the training sample for current experiment). 

The following results were obtained presented at the Table 2 and Fig. 6. 

 

Table 2. MSE comparison for different methods of experiment 2  

 
GMDH FGMDH FGMDH with fuzzy inputs,  

Triangular MF 
FGMDH with fuzzy inputs, 

Gaussian MF 

MSE 0,1129737 0,0536556 0,055557 0,028013
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.  

Figure 6. Experiment 2 results using GMDH and FGMDH 

 

As the results of experiment 2 show, fuzzy group method of data handling with fuzzy input data gives 

more accurate result than FGMDH with triangular membership function or Gaussian membership 

function. In case of triangular MF FGMDH with fuzzy data gives a little worse than FGMDH with 

Gaussian MF.  

 

Experiment 3. RTS-2 index forecasting (closing price)  

Sample size – 32 values. 

Training sample size – 19 values (optimal size of training sample for current experiment). 

The following results were obtained, which are presented in Table 3. 

Table 3. MSE of different methods of experiment 3 comparison 

 
GMDH FGMDH FGMDH with fuzzy inputs, 

triangular MF 
FGMDH with fuzzy 

inputs, Gaussian MF 

MSE 0,051121 0,063035 0,061787 0,033097

 

As the results of the experiment 4 show, fuzzy group method of data handling with fuzzy input data 

gives the better result than GMDH and FGMDH in case of Gaussian membership functions. At the same 
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time in this experiment GMDH gives the better results, than FGMDH and FGMDH with fuzzy input data 

in the case of triangular membership functions. 

 

Experiment 4. RTS index forecasting (opening price) 

For the efficiency estimation stock indexes forecasting using fuzzy neural nets (FNN) with Mamdani and 

Tsukamoto algorithms were carried out. Total 267 everyday indexes of stock prices during period from 

1.04.2005 to 30.12.2005 were used for neural net training. The following results were obtained 

Table 4. Experiment 4 results using FNN 

Criterion 
Mamdani with 
Gaussian MF 

Mamdani with 
Triangular MF 

Tsukamoto with 
Gaussian MF 

Tsukamoto with 
Triangular MF 

MSE 3,692981 3,341179 7,002467 5,119318

MAPE % 0,256091 0,318056 0,318056 0,419659

 

 
Figure 7. Experiment 4 forecasting results using FNN 

 

As experiment 4 results show, forecasting using Mamdani controller with Gaussian MF was the best, 

Mamdani controller with triangular MF is on the second place. 

The comparative results of forecasting accuracy of FNN and different variants of FGMDH were carried 

out. The corresponding results are presented at the Table 5 and Figure 8. 
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Table 5. Forecasting results for FGMDH and FNN 

 

Mamdani 
controller 

   

Tsukamoto 
Controller 

 

FGMDH  
With fuzzy  

Inputs (4 input 
variables) 

FGMDH with  
fuzzy inputs 

(previous values of 
forecasted variable used) 

MSE for Gaussian MF 0,18046 0,26801 0,115072 0,094002

MSE for triangular MF 0,28112 0,34443 0,210865 0,215421

 

The best MSE was achieved by FGMDH with fuzzy inputs, and this method also allows to build interval 

estimation of the forecasted value. FGMDH with fuzzy inputs using Gaussian MF gives more accurate 

forecast than triangular MF as well as with FNN. 

 

 
Figure 8. MSE comparison for FMGH and FNN 

 

Experiment 5. “Lukoil” stock prices forecasting based on previous data about stock prices of 

leading Russian energetic companies for the same period.  

 

Input variables:  
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The results are presented at the Table 6. 

Table 6. Forecasting results in experiment 4. 

 

 
Mamdani 
Controller 

Tsukamoto 
Controller 

FGMDH with  
fuzzy inputs 

(4  input variables ) 

FGMDH with  
fuzzy inputs 

(previous values  
on the input) 

Gaussian MF MSE 3,692981 7,002467 2,1151183 2,886697

 MАРЕ, % 0,256091 0,318056 0,179447 0,256547

 MSE 3,34179 5,119318 4,717268 4,977901

triangular MF МАРЕ, % 0,318056 0,419659  0,40437 0,415434

 

As current experiment results show, forecasting using FGMDH with fuzzy input data using Gaussian 

membership function was the best, fuzzy Mamdani controller with Gaussian MF is on the second place.  

 In a whole the experiments have shown the high accuracy of forecasting using FGMDH in comparison 

with FNN. The additional advantage od GMDH is its possibility to work with short samples and under 

uncertainty when input data are fuzzy. 

Conclusion 

1. The problem of finding unknown dependencies in big data was considered. For its solution inductive 

modeling method GMDH was suggested which allows constructing models with unknown structure 

almost automatically. Besides GMDH may work with insufficient data available (Short samples). 

2. In case of incomplete or unreliable data fuzzy GMDH with fuzzy inputs was suggested for synthesis 

of corresponding forecasting models in experimental data.  

3. The experimental investigations of the suggested method in the problem of stock prices forecasting 

with different types of partial descriptions were carried out. 

4. The comparison of forecasting accuracy of FGMDH and fuzzy neural networks Mamdani and 

Tsukamoto was performed confirming the efficiency of FGMDH. 
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