
International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

177

CROSS-PLATFORM ENVIRONMENT FOR

APPLICATION LIFE CYCLE MANAGEMENT

Elena Chebanyuk, Oleksii Hlukhov

Abstract: “Application Lifecycle Management (ALM) integrates and governs the planning, definition,

design, development, testing, deployment, and management phases throughout the application

lifecycle” [OMG, 2006].

This paper is devoted to designing of ALM for supporting all software development processes. A review

of papers, making strong contribution for improving software development life cycle processes is

represented. This review touches three branches of investigation, namely papers, related to: (1)

improving of communication processes between stakeholders; (2) increasing effectiveness of some

operations in software development life cycle processes; (3) developing fundamental methods and tools

for performing different operations related to several software development life cycle. Then comparative

analysis of such ALM environments as Visual Studio, Team Foundation Server, FusionForge,

TeamForge, IBM Rational Team Concert, IBM Rational Software Architect, and IBM Rational Functional

Tester, is performed. Comparison of different ALM environments’ functionality lets to formulate

requirements for designing cross-platform ALM environment.

Then the conceptual schema of cross-platform ALM based on Eclipse environment is proposed.

All plugins’ functionalities were properly tested. Collaboration of plugins for supporting several software

development tasks is accurately defined. Data flows for different plug-ins collaboration are shown.

These data flows are considered for several kinds of stakeholders roles.

In conclusion, recommendations for raising effectiveness of software development life cycle processes,

using proposed cross-platform ALM environment, are presented.

Keywords: software development life cycle, application life cycle management, software development

life cycle process, requirement analysis, software designing, software testing, deployment, Eclipse,

Team Foundation Server, FusionForge, TeamForge, IBM Rational Team Concert, IBM Rational

Software Architect, IBM Rational Functional Tester, Mylyn, Javadoc, JUnit, STAN, FindBugs, Jubula,

UML to Java Generator, Eclipce IDE, Data tools platform, windows builder, Eclipce color theme, RMF,

UML Designer.

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

178

ITHEA Classification Keywords: D.2.1 Requirements/Specifications (D.3.1) - Elicitation methods (e.g.,

rapid prototyping, interviews, JAD, Methodologies (e.g., object-oriented, structured), Tools; D.2.5

Testing and Debugging - Testing tools (e.g., data generators, coverage testing); D.2.6 Programming

Environments - Integrated environments; D.2.9 Management - Life cycle; D.2.11 Software Architectures;

D.2.13 Reusable Software

Introduction

According to OMG definition: “An Application Lifecycle is the continuum of activities required to support

an enterprise application from its initial inception through its deployment and system

optimization”[OMG, 2006].

“Application Lifecycle Management (ALM) integrates and governs the planning, definition, design,

development, testing, deployment, and management phases throughout the application lifecycle”

[OMG, 2006].

In software development process today incremental-iterative software development approaches is

implemented.

New challenges for improvement effectiveness of software development life cycle processes causes to

modifying existing techniques and tools for increasing of their effectiveness. In order to reach this goal

application performance management (APM) tools are involved in software development life cycle

process.

Application performance management (APM) tools offer these capabilities, enabling companies to

diagnose problems quickly and improve service quality. For companies that are using Agile and DevOps

processes, APM can help improve communication and expedite software delivery. It enables continuous

monitoring and testing during all phases of software delivery, including production [IBM, 2015].

Certifying organizations like the International Standards Organization (ISO) have effectively worked on

various models and suggested guidelines, procedures that may be adopted by IT vendors. Most of

these models have focused on process improvements [Misra, 2017].

Related papers

To improve existing APM tools it is necessary to investigate software development life cycle processes

and activities of stakeholders’ collaboration.

It is a precondition of appearing many scientific papers and vendor solutions addressed to solve this

topic. Such papers are divided on two directions, namely to improving collaboration between

stakeholders and features of software development life cycle processes.

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

179

Consider result of researches, directed to investigating processes of improving collaboration between

stakeholders.

Paper [Misra, 2017] proposes to estimate user capabilities depending on their roles in software

development process. User capabilities are identified in two categories: IT users who are IT experts and

involved in design, development, and implementation of SDLC driven projects, and, second, non-IT

users who, despite having inadequate or no exposure to IT, contribute to SDLC driven projects. The

framework is implemented through Unified Modeling Language (UML) based approach. Paper contains

detailed analysis of stakeholder’s activities in every software development life cycle process. These

roles are primarily end-users, planners, and domain experts (IT and non-IT). For every user role it is

defined which UML diagrams solve tasks of such kind of users the best.

During the early stage of IT acquisition, managing IT activities relating to operation, programming, and

data collection were the major areas of concern. In later stages the focus was on establishing a unit to

look after various types of applications over an extended lifecycle, despite change in technology.

Authors also note that most organizations use different life cycle models for different projects. However,

it is difficult to ascertain the survivability of the system thus developed for its expected life cycle. It is

argued that most of the models popularly coming under SDLC have limitations in delivering good result

in a complex scenario, but are successful in a tightly specified domain. All software models under SDLC

can be characterized as a problem solving loop, which may go through four distinct stages: status quo,

problem definition, solution integration, post-acquisition assessment.

Thus, they propose recommendation for improving software development life cycle processes. Also

challenges for increasing of software development life cycle processes effectiveness are formulated.

Software development life cycle processes are the brick from which software development life cycle is

consists. Successful management of all software development life cycle process is a very complex task

due to the next causes:

 When software requirements changes other software development artifacts are changed too;

 Tools, platform and software environments are changing very quickly too. Thus, time to study and

obtain practical skills with new environments is needed;

 Changing of technologies in turn leads to changing of some actions in performing software

development processes;

 Some vendors adopt classical schemes [OMG, 2006].

Consider papers, relating to challenges of designing effective ALM and improving technologies or tools

for performing different ALM tasks.

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

180

The paper [Grichi, 2015] deals with the verification of reconfigurable real-time systems to be validated

by using the Object Constraint Language (abbrev, OCL). Authors propose an extension of OCL, named

Reconfigurable OCL, in order to optimize the specification and validation of constraints related to

different execution scenarios of a flexible system.

Also a metamodel of the new ROCL is proposed with formal syntax and semantics. This solution gains

in term of the validation time and the quick expression of constraints.

But papers lack recommendation about ROCL implementing to increase effectiveness of software

development lifecycle processes. Also software tools, supporting designed OCL extension, were not

described.

Paper [Chebanyuk and Markov, 2016] presents an approach, verifying class diagram correspondence to

SOLID object oriented design principles, is proposed in this paper. SOLID is an acronym, encapsulating

the five class diagram design principles namely: Single responsibility, Open closed, Liskov substitution,

Interface segregation and Dependency inversion.

To check whether class diagram meets to SOLID, its analytical representation is analyzed by means of

predicate expressions. Analytical representation describes interaction of class diagram constituents,

namely classes and interfaces, in set-theory terms. For every SOLID design principle corresponded

predicate expressions are proposed. Also criteria for estimation of analysis results are formulated. But

paper lacks representing this approach in some restriction language.

Paper [Chebanyuk, 2014] presents a method of behavioral software models synchronization.

Implementing this method behavioral software models, which are changed after communication with

customer, are synchronized with other software models that are represented as UML diagrams. Method

of behavioral software artifacts synchronization makes the Model-Driven Development (MDD) approach

more effective. For synchronization of different behavioral software models, transformation approach in

the area of Model-Driven Architecture (MDA) is proposed. Synchronization operation is executed using

analytical representation of initial and resulting models. Initial behavioral software model is represented

by UML Use Case Diagram. Resulting behavioral software model is represented as UML Collaboration

Diagram. Analytical representation of UML Use Case diagram allows considering data flows. For this

representation set-theory tool operations are used. As a Collaboration Diagram usually contains more

information in comparison with Use Case one, method defines two types of Use Case diagram

fragments. From the beginning Use Case diagram fragments that can be transformed directly to

resulting diagram constituents are considered. Then the rest of Use Case diagram fragments are

processed to represents rules of placement Collaboration Diagram messages. These rules help to

designate data flows, represented in Collaboration Diagram, more accuracy. Method, proposed in this

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

181

article, can be used both separately and be a part of more complex transformation technics, methods

and frameworks solving different tasks in MDA sphere.

Paper [Filho, 2016] presents an approach for resource identification, management, and service

discovery in Service Oriented Architecture (SOA). The service identification process consists of a

combination of top-down and bottom-up techniques of domain decomposition and existing asset

analysis. In the top-down view, a blueprint of business use cases provides the specification for business

services. In the bottom-up approach, the analyst departs from a service identifying the provider entity,

where application and container it is located. The idea is to reach a context view from a service. In order

to reuse a service, clients need to know much more than a simple service name or the address of the

service provider. Developers need to see a service as an interface, including methods that they will

invoke in order to execute the service and their necessary parameters. The lookup service can be seen

as a directory service, where services are found and viewed.

The descriptors specifications include: (i) the service name (the entity type that provides the service); (ii)

the path (URL) where the service is allocated; (iii) the scope informing if the service is local (in the

container) or remote; (iv) name and type of the parameters; (v) a brief description of the service

functionality; (vi) a return informing if any data type returns to the caller service; (vii) the keywords

related to the service; and (viii) implementation, informing if the service is: implemented in Java, a Web

service, or a legacy service encapsulated as a service in a component [Filho, 2016].

The approach emphasizes an architectural model that allows representation, description, and

identification of services, and is explored as a metadata repository. It is focused not only on Web

Services, but also in all services existing in big companies’ applications, including currently developed

services and legacy system services, highlighting the importance of reusing fine granularity services.

The model includes discovery procedures to find and retrieve candidates for services composition and

reuse. These procedures adopt a Case-Based Reasoning approach, in which the services are

considered as cases kept and indexed in a repository. Case matching is carried out by means of text

mining techniques that allow finding the most appropriate service candidate with the desired

requirements for a particular task.

Authors propose to store services in local store and describe service in WSDL format. The next scheme

of service preparation is proposed

The process starts with a description of a service required by a developer. This description includes a

functional account of the service representing the developer experience, beyond the usual descriptors

like name and parameters. The system searches for a service in CB, guided by a given description, and

then it retrieves a list of the best matching services. If a service satisfies the developer necessity, than it

is applied. Otherwise, the alternatives are: (i) to search in the Web, (ii) to adapt a case from the

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

182

retrieved case list, or (iii) to develop a new solution. In any case, the case base must be updated [Filho,

2016].

But the problem of remote user: obtaining information about service if its functionality or address is

changed. One of the solutions is to deploy additional data storage for services identification.

As requirement analysis is a very important process consider papers, related improvement quality of

operations, performed in it.

Paper [Shamra, 2014] proposes an approach of generation sequence or activity diagrams from

requirements, presented in natural text. Requirements analysis process involves developing abstract

models for the envisioned or the proposed software system. However, software requirements are

captured in the form of Natural Language and, generating UML models from natural language

requirements relies heavily on individual expertise. Thus, authors present an approach towards

automated generation of behavioral UML models, namely activity diagrams and sequence diagrams.

Initial information for transformation is lexical and syntactic analysis of NL statements that is grounded

on patterns. Authors propose an idea to analyze requirement specification involving natural language

patterns.

Patterns – grammatical knowledge or domain-specific prove helpful in improving the quality of analysis.

Knowledge patterns are divided on three types: lexical patterns for indicating a relation; grammatical

patterns, which are combinations of part-of-speech; and, paralinguistic patterns, which include

punctuation, parenthesis, text structure etc. [Shamra, 2014].

The idea of approach is based on transforming the requirements statements to intermediary structured

representations – frames. Frames are special structures for representing knowledge using slots to store

knowledge in an Object Oriented manner and, are an efficient means for reasoning. Then frames are

translated to behavioral UML models. Authors use peculiarities of constructing sentences in English

language, namely parts of sentences, times and verb forms, as well as examples of frames for

composing prepositions, active, and passive voice. For analysis of sentence Stanford Dependency

parser is used [Stanford, 2015].

Knowledge also are stored in frames is then used to automatically generate activity and sequence

diagram. Also authors use common in activity and sequence diagram elements notations.

Paper [Inoue, 2015] proposes an extension of goal graphs in goal-oriented requirements engineering.

First it is necessary to understanding the relations between goals. Goals specify multiple concerns such

as functions, strategies, and non-functions, and they are refined into sub goals from mixed views of

these concerns. This intermixture of concerns in goals makes it difficult for a requirements analyst to

understand and maintain goal graphs. In our approach, a goal graph is put in a multi-dimensional space,

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

183

a concern corresponds to a coordinate axis in this space, and goals are refined into sub goals referring

to the coordinates. Thus, the meaning of a goal refinement is explicitly provided by means of the

coordinates used for the refinement. By tracing and focusing on the coordinates of goals, requirements

analysts can understand goal refinements and modify unsuitable ones.

Paper [Escande, 2013] proposed method of defining requirement priority and assigning it to different

stakeholders. Requirements are proposed to be assigned to different levels of priorities. Then, they are

grouped by level of priority. And it is defined to which stakeholder concrete requirement or group of

requirements is assigned. But paper lack to proposition according to which criterion some requirement is

corresponded to which priority level. And also there is no concrete recommendations how to distribute

requirements between different types of stakeholders.

The work [Klimek, 2012] concerns gathering requirements and their formal verification using deductive

approach. This approach is based on the semantic tableaux reasoning method and temporal logic.

Authors ground the necessity of developing of implementing formal methods and approaches for

requirement analysis performing [Klimek, 2012].

Formal methods can constitute a foundation for providing natural and intuitive support for reasoning

about system requirements and they guarantee a rigorous approach in software construction. The main

motivation for this work is the lack of satisfactory and documented results of the practical application of

deductive methods for the formal verification of requirement models [Klimek, 2012].

Temporal logic is a well established formalism for describing properties of reactive systems. It may

facilitate both the system specifying process and the formal verification of non-functional requirements

which are usually difficult to verify [Klimek, 2012].

The semantic tableaux method is quite intuitive and has some advantages over traditional deduction

strategies. System requirements are gathered using some UML diagrams. Requirements engineering

based on formal analysis and verification might play an essential role in producing the correct software

since this approach increases reliability and trust in software. Deductive inference is always the most

natural for human beings and is used intuitively in everyday life. A use case, its scenario and its activity

diagram may be linked to each other during the process of gathering requirements. When activities and

actions are identified in the use case scenario then their workflows are modeled using the activity

diagram. The automation of this process is crucial and constitutes a challenge in the whole deductive

approach [Klimek, 2012].

Diagram is decomposed on components. For every component it is proposed to use pattern allowing to

describe in text operation, that match to it.

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

184

Also authors mentioned that temporal logic properties and formulas may be difficult to specify by

inexperienced users and this fact can be a significant obstacle to the practical use of deduction-based

verification tools.

Automatic transformation of workflow patterns to temporal logic formulas is proposed. These formulas

constitute logical specifications of requirements models. The architecture of an automatic and

deduction-based verification system is proposed. Authors expect that applying this concept results in the

reduction of software development costs as some errors might be addressed in the software

requirements phase and not in the implementation or testing phases. But analyzing complex software

may cause too long formulas difficult for further processing [Klimek, 2012].

Paper [Teruel, 2011] proposes techniques for increasing of effectiveness communication processes

between stakeholders. Authors represent three Goal-Oriented approaches, namely NFR framework, i*

and KAOS, are evaluated in order to determine which one is the most suitable to deal with this problem

of requirements specification in collaborative systems. These Goal oriented approaches aimed to

increase requirement modeling processes. i* framework is complicated with several relations that are

not presented in classical UML diagrams. KAOS goal model lets to define dependencies between goals.

This classification was elucidated by i* framework. Authors represented comparative analysis of

considered frameworks and define their peculiarities.

i* only provides a partial support for quantifying the relations among requirements when using

contribution links. The i* approach also fails in representing the requirements importance, giving no

support to determine which requirements are more important than others [Teruel, 2011].

Nevertheless, the other two GO approaches also share this lack of representation of the importance of

each requirement. KAOS also fails in the same features than i* but, unlike this approach, KAOS obtains

a lower (or the same) score in almost all features except for the Hierarchical Representation feature,

thanks to its tree-based representation. Finally, the NFR framework is the less suitable approach,

obtaining a very low score, because of both the lack of expressiveness to specify FRs and its lack of

adaptability to represent Collaborative Systems Characteristics. Also approach how to analyze

requirement specification to match requirements to proposed classification of goals and sub-goals do

not identified [Teruel, 2011].

ANALYSIS OF EXISTING APPLICATION LIFE CYCLE PRODUCTS ON THE MARKET

There are many ALM tools available for tracking application changes. These range from dedicated ALM

products that monitor an application from inception to completion, automatically sorting files into logical

buckets as changes are noted, to simple wikis that require team members to record changes manually,

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

185

this section reviewed the most popular among them, namely: Visual Studio, IBM Rational Team

Concert, FusionForge and Team Forge

1.1 Microsoft Visual Studio with Team Foundation Server

Microsoft Visual Studio (VS) is an integrated development environment (IDE) from Microsoft. It is used

to develop computer programs for Microsoft Windows, as well as web sites, web applications and web

services.

Microsoft Visual Studio has the next features:

 allow to write and debugg code;

 has a forms and data Designer;

 allow calculate code metrics;

 has plugins support;

 support source control via Team Foundation Server or Git.

Microsoft Visual Studio is Integrated with Team Foundation Server (TFS) proposing common Microsoft

product that provides the next functions:

 source code management (either with Team Foundation Version Control or Git);

 reporting;

 requirements management;

 project management (for both agile software development and waterfall teams);

 automated builds;

 lab management;

 testing;

 release management capabilities.

TFS is often used on large enterprises. Free version of the product is an IDE (has limitations in code

editor, etc.) with minimal possibilities (version control system, class diagram, metrics calculation, etc.)

for life cycle support. In turn, the paid version allows you to not only make full use of the code editor, but

also almost fully support the life cycle of the developed software [Microsoft, 2015].

1.2 IBM Rational Team Concert

Rational Team Concert (RTC) is a software development team collaboration tool developed by the

Rational Software brand of IBM, who first released it in 2008. The software is available in both client

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

186

versions and a Web version. It provides a collaborative environment that software development teams

use to manage all aspects of their work. It has the next features:

 supports all main paradigms of a software development;

 allow to create local source control;

 defect tracking;

 build Management;

 has a customized dashboard;

 allow to tracking changes in items;

 has a report system for fast-tracking of detected defects.

As well as Microsoft Visual Studio, IBM Rational Team Concert is focused on large enterprises and the

base package only allows you to plan, schedule and monitor progress of work, version control and

bug/feature tracking. In order to design, system requirements analysis, etc. you need not buy separate

IBM Rational products [IBM b), 2015].

1.3 FusionForge

FusionForge (FF) is a free software application descendant of the forge (web-based project-

management and collaboration software) originally created for running the SourceForge.net platform.

FusionForge is licensed under the GNU General Public License, and is a fork/renaming of the code

which was previously named GForge.It has the next features:

 provides version control by using GNU arch, Bazaar, CVS, Darcs, Git or Subversion)

 allow to bug/feature-tracking;

 has own messaging feature, that can be deployed to run a self-hosted forge;

 allow to create surveys for users and admins;

 plugins support;

 allow to create wiki for systems;

 has a task management system.

FusionForge well suited for medium and small teams. Environment allows automating some of the life

cycle processes, flexibly configuring the environment for development team style (e.g. setting of fields to

keep track of bugs). Of the downsides can highlight the need for a local server to work with the

environment (in case of problems with the server team will not not have an access to the tasks and

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

187

repositories, due to lack of a desktop client), also environment does not provides tools for software

design (e.g. UML support) [Fushionforge, 2016].

1.4 TeamForge

TeamForge (TF) is a collaborative revision control and software development management system. It

provides a front-end to a range of software development lifecycle services and integrates with a number

of free software / open source software applications (such as PostgreSQL and Subversion).It has the

next features:

 has a revision control;

 software development management system;

 bug tracking system;

 allows you to track the progress of performed work;

 allows you to keep track of tasks after release (bug/feature completion tracking);

 allows to create any discussions for platform users;

 can be integrated in other software (Visual Studio, Microsoft Office, Eclipse and so on).

This environment is mainly focused on large companies that use additional software in the development

of programs (for example Microsoft Office, Visual Studio, Outlook etc.) and its own servers (for

deploying lifecycle environment). But, this environment, does not allow to build UML diagrams (does not

support design process).

Table 1 represents results of comparison analysis of ALM environments [Teamforge, 2016].

As you can see from the Table 1 listed lifecycle management environments has both advantages and

disadvantages. Disadvantages of considered ALMs are the next:

 need to be purchased (Visual Studio, IBM Rational Concert, TeamForge);

 not available on other operating systems (Visual Studio);

 lack of support of the design process (FusionForge, TeamForge, IBM Rational Concert (only in

additional packages);

 lack of software testing tools (FusionForge, TeamForge, IBM Rational Concert (only in

additional packages);

 lack of code editor (FusionForge, TeamForge, IBM Rational Concert (only in additional

package));

 no desktop client (FusionForge, TeamForge);

 attachment only to the local server (FusionForge, TeamForge).

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

188

Table 1. Comparison of ALM environments

 VS FF TF RTC

Version control + + + +

Requirements management Only in TFS + + +

Bug/feature-tracking Only in TFS + + +

Plug-in support + + - Can only integrates in

others IBM’s products

Code editor + - - +

Code debugger + - - +

GUI designer + - - -

UML support Partially - - In Rational Software

Architect

Code generation from models + - - +

Task management + + + +

Unit Testing + - - In Rational Functional

Tester

Functional testing - - - In Rational Functional

Tester

Generation of

developer’s documentation

- - - -

Cross-platform - + + +

Free to Use Only Community

version (Limited

version)

- + -

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

189

Task and challenges

Analyzing review of papers and tools formulate requirements for designed ALM environment formulate

requirements to future system:

 support software developing at all stages of the life cycle;

 it must be cross-platform;

 can be deployed on local computer;

 contain modules supporting stakeholders collaboration.

 support following functions:

― task managing

― defining requirements;

― designing new software by using a UML diagrams;

― implementing a new software by using Eclipse IDE, UML to code convertor etc.;

― testing developed software;

― maintenance developed software (automatic creation of developers documentation, bug

tracking list);

― and monitor changes in the project with the help of git version control).

Proposed approach

Designing good application life cycle management environment should consider possibilities to change

performing of some processes by means of defining proper configuration of plugins.

To simplify software development lifecycle management we use Eclipse platform that anbles to plug a

variety of free plug-ins, among which there are plug-ins for software lifecycle management.

The Figure 1 containing a graphical representation of plug-ins that can be used on the phases of a

typical software development life cycle (SDLC).

Represent description of chosen plug-ins: functionality:

 UML to Java Generator extends functionality of UML Designer – allows to generate java code

from UML Class Diagrams;

 WindowBuilder extends functionality of Eclipse IDE – allows to build GUI;

 Eclipse Color Theme extends the capabilities of the Eclipse IDE code editor and Data Tools

Platform sql editor;

 JUnit extends functionality of Eclipse IDE – allows to write Unit tests to Java classes;

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

190

 STAN extends functionality of Eclipse IDE – allows to analyze code that was written in Eclipse

IDE;

 FindBugs extends functionality of Eclipse IDE – allows to find possible bottlenecks, errors and

bugs in code;

 Jubula extends functionality of Eclipse IDE – allows to write and test program that was written in

Eclipse IDE;

 JavaDoc extends functionality of Eclipse IDE – allows to write developer’s documentation for

the written code in Eclipse IDE.

Data flow between environment components and software development artifacts is represented on

Figure 2.

Figure 1. Plug-ins collaboration used to design a typical software development

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

191

Figure 2. Data flow between ALM environment components

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

192

Represent Data flow between environment components

1. Project manager uses Mylyn for task scheduling;

2. From Mylyn Requirements analyst receive tasks for completion and by using RMF creates a

requirements list;

3. Software architect receives tasks from Mylyn and Requirements list from EGit creates UML

diagrams by using UML Designer;

4. Developer receives tasks from Mylyn, Requirements list and UML diagrams from EGit

implements program in Eclipse IDE;

5. QA engineer receives tasks from Mylyn and source code from EGit creates Unit tests and

perform Unit tests in JUnit;

6. QA engineer receives tasks from Mylyn and executable from EGit creates Functional in Jubula;

7. QA engineer receives tasks from Mylyn and source code from EGit perform Finding error

process in STAN and FindBugs;

8. Help-desk specialist receives tasks from Mylyn and source code from EGit creates Developer

documentation in JavaDoc

9. Developer receives error list, test results and developer documentation from EGit fixes bug in

Eclipse IDE;

10. Tasks, Requirements, UML Diagrams, Source code, Program, Tests result and Developer

documentation are stores in EGit.

Schema, representing matching with plug-ins and stakeholders’ activities is represented in figure 3.

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

193

Figure 3. ALM environment and plug-ins interaction scheme

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

194

Work processes for each stakeholder role

Analyzing schemas on Figures 1-3 analyze work processes for each stakeholder role.

Project manager activities

Figure 4. Creating project repository

Figure 5. Project Planning

Requirement analyst activities Software architector activities

Figure 6. Defining requirements

Figure 7. System designing

Software developer activities

Figure 8. Create data connection

Figure 9. Upload(download) Implementation

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

195

Figure 10. Create developer documentation

Figure 11. Upload(download) GUI

Implementation

Activities of QA Engineer

Figure 12. Unit testing

Figure 13. Create bug-list

Figure 14. Functional testing

Figure 15. Structure analysis

Activities of Help-desk specialist

Figure 16. Create bug list

Figure 17. Update developer documentation

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

196

Conclusions

Cross-platform environment for supporting ALM that is based on Eclipse is proposed in this paper. It

satisfies to all challenges, formulated above, namely cross-platform support; free; extensible by means

of setting flexible plug-ins configuration; supporting extensible stakeholders activities and organizing

different data flows between modules by means of adding new plugins; can be configured on local

computer; also can be deployed on server for stakeholders interconnection. Represented activities

according stakeholders roles are focused on actions, performed by stakeholders. In order to adopt

software development life cycle processes to needs of specific enterprise sequence of actions, and

consequently configuration of plugins can change. As eclipse provides supporting desktop, cloud and

platforms IDEs, proposed ALM can be integrated with various programming languages, for example by

means of creating developing perspectives [Eclipce, 2015].

Implementing of designed ALM will allow reducing the time required to develop new software, will

increase the involvement of the team in the development process. In this turn, project managers will be

able to track the progress of the project and identify the risks of disrupting the work schedule.

With the advent of such software environments in various industries, software developers and other

stakeholders will spend less time on development, which in turn will reduce the cost of development.

Further research

To propose an ALM approach, facilitating requirement analysis and software designing; focusing on

Model-Driven techniques, making accent on code generation techniques.

Bibliography

[Chebanyuk and Markov, 2016] Chebanyuk E. and Markov K. (2016). An Approach to Class Diagrams

Verification According to SOLID Design Principles.In Proceedings of the 4th International

Conference on Model-Driven Engineering and Software Development - Volume 1:

MODELSWARD, ISBN 978-989-758-168-7, pages 435-441. DOI: 10.5220/0005830104350441

http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=HASwCJGMcXc=&t=1

[Chebanyuk, 2014] Chebanyuk, Elena.2014. Method of behavioural software models synchronization.

International journal Informational models and analysis. – 2014, №2 P 147-163

http://www.foibg.com/ijima/vol03/ijima03-02-p05.pdf

[Eclipce, 2016] https://eclipse.org/ide/

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

197

[Escande et al., 2013] Loup Escande E. and Christmann O. (2013). Requirements Prioritization by End-

users and Consequences on Design of a Virtual Reality Software - An Exploratory

Study.In Proceedings of the 8th International Conference on Evaluation of Novel Approaches to

Software Engineering - Volume 1: ENASE, ISBN 978-989-8565-62-4, pages 5-14. DOI:

10.5220/0004397900050014

[Filho et al., 2016] Filho A., do Prado H. and Ferneda E. (2016). A Metadata-based Architecture for

Identification and Discovery of Services in SOA..In Proceedings of the 18th International Conference

on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-758-187-8, pages 298-305.

DOI: 10.5220/0005867702980305

[FusionForge, 2016] https://fusionforge.org/

[Grichi et al., 2015] Grichi H., Mosbahi O. and Khalgui M.. ROCL: New Extensions to OCL for Useful

Verification of Flexible Software Systems. DOI: 10.5220/0005522700450052 In Proceedings of the

10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), pages

45-52 ISBN: 978-989-758-114-4

[IBM b), 2015] https://jazz.net/library/article/632

[IBM, 2015] http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=APW12347USEN

[Inoue et al., 2015] Inoue W., Hayashi S., Kaiya H. and Saeki M.. Multi-dimensional Goal Refinement in

Goal-Oriented Requirements Engineering.DOI: 10.5220/0005499301850195 In Proceedings of the

10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), pages

185-195 ISBN: 978-989-758-114-4

[Klimek, 2012] Klimek R. (2012). Proposal to Improve the Requirements Process through Formal

Verification using Deductive Approach.In Proceedings of the 7th International Conference on

Evaluation of Novel Approaches to Software Engineering - Volume 1: ENASE, ISBN 978-989-8565-

13-6, pages 105-114. DOI: 10.5220/0004001901050114

[Microsoft, 2015] https://www.visualstudio.com/tfs/

[Misra, 2017] Harekrishna Misra Managing User Capabilities in Information Systems Life Cycle:

Conceptual Modeling. International Journal of Information Science and Management Vol. 15, No. 1,

2017, 39-58

http://ijism.ricest.ac.ir/index.php/ijism/article/view/936

[OMG, 2006] ftp://ftp.omg.org/pub/presentations/ajw_alm/ALM.pdf

[Sharma et al., 2014] Sharma R., Gulia S. and Biswas K. (2014). Automated Generation of Activity and

Sequence Diagrams from Natural Language Requirements.In Proceedings of the 9th International

International Journal “Information Theories and Applications”, Vol. 24, Number 2, © 2017

198

Conference on Evaluation of Novel Approaches to Software Engineering - Volume 1: ENASE, ISBN

978-989-758-030-7, pages 69-77. DOI: 10.5220/0004893600690077

[Stanford, 2016] http://nlp.stanford.edu/software/stanford-dependencies.shtml

[Teamforge, 2016] https://www.collab.net/products/teamforge-alm

[Teruel et al., 2011] Teruel M., Navarro E., López-Jaquero V., Montero F. and González P. (2011). A

COMPARATIVE OF GOAL-ORIENTED APPROACHES TO MODELLING REQUIREMENTS FOR

COLLABORATIVE SYSTEMS.In Proceedings of the 6th International Conference on Evaluation of

Novel Approaches to Software Engineering - Volume 1: ENASE, ISBN 978-989-8425-57-7, pages

131-142. DOI: 10.5220/0003466301310142

Authors' Information

Elena Chebanyuk – Assoc. Prof. of Software Engineering Department, National

Aviation University, Kyiv, Ukraine,

Major Fields of Scientific Research: Model-Driven Architecture, Model-Driven

Development, Software architecture, Mobile development, Software development,

e-mail: chebanyuk.elena@ithea.org

Oleksii Hlukhov – student of Software Engineering Department, National Aviation

University, Kyiv, Ukraine.

	Rybina_Rybin_Blohin_Sergienko.pdf
	Individual planning of studying methods of a course
	Intelligent analysis of tutoring problems solutions
	Intelligent Decision Support

