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Abstract: In this paper we consider association rules mining in tables with quantitative attributes. The 

chain split technique of finding frequent itemsets, known in Boolean association rule mining domain, is 

extended to the “cube-split” technique being used for finding frequent itemsets for the case of specific 

quantitative attributes. 

Keywords: Data mining, frequent itemsets, quantitative association rules, chain-split technique, cube-

split technique. 

ITHEA Keywords: I.5 Pattern recognition: I.5.1 Models 

 

1. Introduction 

 

The goal of the data mining and knowledge discovery is to extract high level information 

relationships in raw big data of applications. Logical-Statistical Association rules (simply association 

rules) are one of the key data mining techniques. An association rule is a logical-statistical relation of the 

form ܣ ⇒ ܤ , where ܣ and ܤ  are events. The rule states that with a certain probability, called the 

confidence of the rule, when ܣ  occurs in the given database so does ܤ . The second important 

characterization of rules is the probability of occurrence of the event ܤ&ܣ over the database records, 

called the rule support. The problem is to find all association rules that satisfy the requirement of 

minimum support and minimum confidence. The main bottlenecks of the rule generation are the speed 

of the algorithms used, the limitation on subset of the rule collections obtained, and the applied value of 

these rules – their interpretation. A well-known interpretation of association rules comes with the 

problem market-basket-data-analysis. 

The structure of this article is as follows: Boolean association rule mining problem is considered 

in Section 2, and a brief description of the APRIORI algorithm, the de facto standard approach for the 

case of binary attributes, - is introduced. Section 3 describes the necessary structural knowledge on the 

discrete grids that is necessary for the functionality of the chain split technique which is the main 

instrument considered in this work. Section 4 is devoted to the analysis of rule mining with quantitative 

attributes. The chain split technique is extended to the case of quantitative attribute rule mining.  
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2. Boolean Association Rule Mining 

 

About the problem 

 

Association rule mining in terms of confidence/support was first introduced by [Agrawal et al., 

1993], and later is addressed in [Agrawal et al., 1994]. These first papers consider databases consisting 

of categorical attributes only (a categorical attribute is one which contains discrete, and typically, 

unordered data). Thus the events ܣ and ܤ on both sides of the rule	ܣ ⇒  are logical expressions of ,ܤ

categorical variables. The aim is to find all rules with confidence and support above the user-defined 

thresholds of these parameters (minconf and minsup). It is desirable that the set of constructed rules is 

sharply limited in size. Then the rules may have a better interpretation. 

Earlier, for the purpose of discovering exact or almost exact rules Piatetsky-Shapiro [Piatetsky-

Shapiro, 1991] introduced three principles for rule interestingness (0 if the variables are statistically 

independent, monotonically increasing if the variables occur more often together, and monotonically 

decreasing if one of the variables alone occurs more often) defining in this way the base concepts of 

contemporary rule mining. In structural data analysis rules are likely to be exact. Exact rules appear also 

as functional dependencies in relational databases [Armstrong, 1998]. On the other hand, in business 

databases and in very large databases (similar to supermarket transaction databases), rules may be 

descriptive even in approximation, with the confidence much less than 100%. A number of efficient 

algorithms for mining binary association rules have been developed (see [Agrawal et al., 1994], [Mannila 

et al., 1994], [Toivonen, 1996] for just a few examples).  And the APRIORI [Agrawal et al., 1996] 

algorithm is known as the de facto standard of Boolean association rule mining.  

 

Description 

 

Consider a set ܫ = ,ଵݔ} ,ଶݔ … , {ݔ  consisting of ݊  items ݔ	 , and their subsets (itemsets) ܺ ⊆ ܫ . We say that it is given a ݇ -itemset, when |ܺ| = ݇ . Let ܦ  be a database of records 

(transactions) that are itemsets.  

We say that the record ܶ ∈ ܺ is contributing to the itemset ܺ, if ܦ ⊆ ܶ. Association rule is an 

"if-then" type logical rule ܺ ⟹ ܻ, the fulfillment of which is related to the certain (statistical) conditions. 

Let ܺ and ܻ be itemsets where ܺ ∩ ܻ = 0. The ratio of the number of all records of ܦ contributing to ܺ and the overall number of records of ܦ - is called support of ܺ in ܦ:  sup(ܺ) = |{ܶ ∈ ,ܦ ܺ ⊆ .|ܦ|/|{ܶ
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Next to this is the concept of support for the rule ܺ ⟹ ܻ itself: sup(ܺ ⟹ ܻ) = sup(ܺ ∪ ܻ) = |{ܶ ∈ ,ܦ ܺ ∪ ܻ ⊆  .|ܦ|/|{ܶ
Another important property for the rules is the confidence that is defined as:  conf(ܺ ⟹ ܻ) = sup(ܺ ∪ ܻ) /sup	(ܺ), 

which is the conditional probability that a record contains ܻ when it is known that it contains ܺ. 

 

 

APRIORI algorithm 

 

Practical implementation of association rule mining techniques is a subject of intensive 

theoretical and algorithmic studies. It is well known that the problem splits naturally into two stages 

[Agrawal et al., 1996]. The first stage is constructing the so called frequent fragments (itemsets), those 

that occur in the database with frequencies above the predetermined value of support. The second 

stage is actually the phase of synthesizing the rules with a given confidence from the set of frequent 

subsets constructed during the first stage of the algorithm. 

The well recognized algorithm in association rules mining APRIORI [Agrawal et al., 1996] builds 

the set of frequent subsets (first stage mentioned above) with so-called building up method. APRIORI 

first considers one-element subsets, and computes their frequencies. Next to this, it considers all two-

element subsets one-element subsets of which are frequent, and verifies their proper occurrences in the 

database. Thus the frequent subsets can be building up to the state when it includes subsets that all are 

not frequent enough. This procedure is known as growing of frequent itemsets. Computational 

complexity here is significant and it is especially important because of algorithms will be used over the 

very large data volumes.  

 

Alternative approaches 

 

Are there any alternative approaches for building rules? There is a huge number of approaches, 

ideas and algorithms that address this issue. The case of quantitative attributes is much harder. General 

approaches applied are: rule interpretation as a union of parts – “population-subset” and “extraordinary-

behavior” with consecutive optimization (maximization of support and/or confidence); design and 

consideration of interpretable regions such as attribute and multi-attribute “convex” regions; and - 

application of fast algorithms, for example randomized algorithms, OPUS, Kadane's, Elias’s and other 

algorithms.  

In this paper we propose a new approach to rule mining which connects with the well-known 

results from the geometry of the n-dimensional unit cube that corresponds to the Hansel’s algorithm for 
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monotone Boolean function identification. We give an extension of this approach to the multidimensional 

multivalued grid [Aslanyan et.al., 2017]. The extension will cover the case of rule mining by the sets of 

numerical attributes. 

 

Monotonicity property 

 

Monotonicity is the important property of function sup(X),  (X ⊆ Y) ⇒ sup(X) ≥ sup(Y). 
Monotonicity is the key property of the Boolean rule mining models, but it is not simply 

interpretable in the case of numerical attributes. Things changed when we try to speak in terms of 

attribute negations [Boulicaut, 2001]. This is when we aim at knowing the frequencies of conjunctions of 

all literals – that means attributes and their negations. In computational layer this doubles the number of 

attributes and forces the flooding of area of frequent subsets. [Boulicaut, 2001] and other publications 

derived formulas that introduce frequencies for negations in terms of formulas of positive frequencies. 

The issue of positive-negative attributes appears in case of quantitative attributes as the monotone-anti-

monotone behavior.    Quantitative-monotone, in its turn, means that the increase of attribute values 

increases probability of the target event. For a particular target event we suppose that all individual 

attributes are monotonic and that they, in integration, also monotonically depend on the target event. 

 

Isoareas 

 

Isoareas of sup(X) in Figure 1 can be presented by the sequences of embedded monotone 

Boolean functions. But such sequences cannot behave arbitrarily. For example, if we consider a simple 

2-row database then these rows correspond to 2 vertices of ݊-cube, let they be denoted by ݒଵ and ݒଶ. 

Now consider the subcubes ܫଵ(ݒଵ, 1෨)  and ܫଵ(ݒଶ, 1෨)  formed by these vertices and by the 1෨ =(1,1,⋯ ,1) vertex of the cube. All points of these subcubes 1-support one of the rows but the points in 

intersection support both of them. So it is not possible to design a database that gives homogeneous 

support value over the area covered by ܫଵ(ݒଵ, 1෨) and ܫଵ(ݒଶ, 1෨). So the mentioned “sequences of 

embedded monotone Boolean functions” are a specific inclusion-exclusion type objects to be described 

and studied in deep. 
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Figure 1. Hasse type diagram of power set of set I of attributes with isoareas of the values of function sup(X) 
Frequent Subsets Mining (FSSM) Problem 

 

Given: ࣞ – the database of subsets of some set A of attributes; and a frequency threshold ݐ ≥ 0. 

Provide: the ݐ-frequent subsets in ࣞ. 

For the FSSM Problem several approaches are proposed: variations to the original APRIORI algorithm 

[Agrawal et al., 1996], as well as other approaches like [Aumann et al., 2003]. The most efficient 

algorithms are based on the observation that the frequent subsets are determined by the closed 

frequent subsets, and such algorithms need to mine the closed frequent subsets at first [Li et al., 2006]. 

 

A subset X ⊆ A  is called closed (maximal subset) if for each Y ⊆ A , Y ⊃ X , it holds sup(Y) <   .(X)ݑݏ
For X ⊆ A we define ρ(X) ≔ ⋂{Y ⊆ A ∶ Y ⊇ X	and	ࣞ(Y) > 0} to be the closure of X in ࣞ. It can be checked that X ⊆ ρ(X), X ⊆ Y ⇒ ρ(X) ⊆ ρ(Y) and ρ൫ρ(X)൯ = ρ(X). It also can be 

checked that the closed subsets are the closures. 

Obviously ࣞ: 2 → ℕ defines a monotonic decreasing integer function when X increases by 

the set-inclusion, over the Boolean cube (2, ⊆), and it can be checked that the frequent subsets 

correspond to the subsets of the closed frequent subsets, and thereby closed frequent subsets 

determine the frequent subsets. 

 

K+1
K 

empty set 
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3. On the Geometry of the n-Dimensional Unit Cube 

 dimensional unite cube  

 

Variable with the only values 0 and 1 (false and true) is called a Boolean variable. ݊ -

dimensional Boolean function is а single-valued transformation of the set of all vectors composed by ݊ 

Boolean variables on to the Boolean set ܤ = {0,1}. The domain where the Boolean function is given is 

known as the set of vertices of the ݊ dimensional unite cube ܤ that is the ݊-th Cartesian degree of the 

set ܤ .ܤ  is the set of all binary vectors ߙ = ,ଵߙ) ,ଶߙ … ,  .), which are called vertices or pointsߙ

Usually ܤ is presented geometrically via the Hasse diagram, in which vertices of ܤ  are placed in 

horizontal layers; the ݇-th layer (0 ≤ ݇ ≤ ݊) contains all the vertices with ݇	number of ones. The 

layers are arranged vertically starting from the zero layer (at the bottom) to the layer with number  . The ݇-th layer consists of ܥ vertices. Two vertices ߙ and ߚ෨ are called adjacent if they differ in exactly one 

coordinate. These neighboring vertices are connected by an edge. 

Vertices of ܤ  are organized as follows: a point  ߙ = ,ଵߙ) ,ଶߙ … , ܤ ) ofߙ  precedes the 

point ߚ෨ = ,ଵߚ) ,ଶߚ … , ߙ , ifܤ ) ofߚ ≤ , 1ߚ ≤ ݅ ≤ ݊. The fact that a point ߙ precedes the point ߚ෨ 
is denoted by ߙ ≼ ෨ߚ . If ߙ ≼ ෨ߚ  and ߙ ≠ ෨ߚ  then we write ߙ ≺ ෨ߚ . Two different points ߙ  and ߚ෨  are 

called comparable if one of the following conditions occur: ߙ ≼ ෨ߚ  or ߚ෨ ≼ ߙ . Otherwise they are 

incomparable. 

It is evident, in general, that to uniquely identify a Boolean function it is necessary to know its values at 

all points of the ݊-dimensional unit cube. But if the function belongs to some specific class that is 

narrower than the set of all Boolean functions, then for the unique determination of its values at all 

points of ܤ  is not necessary to know in advance the values of function at all points of ܤ , and 

sometimes it is enough to know the values on a very small subset of vertices of ܤ. For example, to 

uniquely identify a symmetric Boolean function of ݊ variables (these functions possess the same value 

on each layer of ܤ) it is enough to know its values on the set of points from ܤ which is intersecting all 

layers of ܤ. 

 

Monotone Boolean functions 

 

Boolean function ݂(ݔଵ, ,ଶݔ … , ߙ ) is called monotone if from the fact thatݔ ≺ ,ଵߙ)݂ ෨ it implies thatߚ ,ଶߙ … , (ߙ ≤ ,ଵߚ)݂ ,ߚ … ,  ). The class of all monotone Boolean functions of ݊ variables isߚ

denoted by ܯ  . Some geometric properties of monotone Boolean functions are evident. To each 

function there is a unique set መ݂  of incomparable vertices of ܤ, so that ݂(ߙ) = 0 iff ߙ precedes one 
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of the vertices of መ݂. Geometrically the area of 0 assignments of ݂ is a union of subcubes, composed 

by the vertex 0෨  and the vertices of መ݂. Another important property is that on growing chains of vertices 

in ܤ, the function values - 0’s and 1’s fills two different intervals at most.  

Two type of recognition problems about the monotone Boolean functions are rising in different 

applications. One is the recognition whether the given ݂(ݔ) belongs to ࡹ, the class of all monotone 

Boolean functions; and the second is in deciphering of ࢌ(࢞) itself given that ݂(ݔ) ∈  . We addressܯ

the second topic because of its identity to the problem of frequent itemset mining. 

 

Chain Split 

 

A separate group of algorithms for Boolean association rule mining is introduced in [Aslanyan et 

al., 2008]. 

Suppose that an arbitrary (unknown to us) function ݂(ݔ) ∈ ܯ  is given by an operator ܣ , 

which returns the value	݂(ߙ) by the given input ߙ ∈   it is required to fullyܣ . Given the operatorܤ

restore the set of values of the function	݂(ݔ). After each call to the operator which resumes the value ݂(ߙ)  for the point ߙ = ,ଵߙ) ,ଶߙ … , (ߙ ∈ ܤ  other points of ܤ  become determined through the 

extension by the monotonicity property. It is clear that we should strive for optimality of these algorithms 

that is to minimize the steps of applying to ܣ.  

Consider the set ܴ of all algorithms that solve this problem. That is, for a monotone Boolean 

function	݂(ݔଵ, ,ଶݔ … ,   restores the complete table ofܣ ) an algorithm from ܴ exploiting the operatorݔ

values of	݂(ݔ). Obviously the work of algorithms consists of several stages. Algorithm selects a point ߙ ∈ ,ଵߙ)݂  computes the valueܣ  and with help of operatorܤ ,ଶߙ … ,  ) (selection). The resultingߙ

value of the function at the point ߙ is inserted into the table of computed values of the function. The 

table is extended by monotonicity, which includes determination of all points that can’t have 0 or 1 

values arbitrarily after knowing the value at ߙ (extension). For example if ݂(ߙ) = 1 then for all points ߚ෨ that are higher that ߙ (according to the order of vertices defined above) ݂൫ߚ෨൯ = 1 and the table of 

values of ݂ is filled in accordingly. Next step is the rule that selects another input for operator ܣ and 

the table of values of ݂ is filled again by monotonicity. This process is repeated until the table of values 

is filled completely. 

Obviously a pair <algorithm ݎ ∈ ܴ and monotone function ݂(ݔଵ, ,ଶݔ … ,  )> can be associated withݔ

the number ߮(ݎ, ݂) of calls to the operator ܣ during the recovery of table of values of the function ݂(ݔଵ, ,ଶݔ … ,   .ݎ	)  by the algorithmݔ

It is appropriate to evaluate the quality of the algorithms ܴ  using function ߮(ܴ, ݂) =min ,ݎ)߮ ݂). We have a condition: ݂ ∈ ܯ . The complexity of the recognition of a class of ݊ -
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dimensional monotone functions can be characterized by the function ߮(݊) = (ܯ,ܴ)߮ =max ߮(ܴ, ݂), where the maximum is taken over all monotone functions.  

Let us introduce some general terms on function deciphering [KOR,1965]. Suppose we are 

given a certain class ܰ of Boolean functions and a function ݂, belonging to this class. The set of points ܩ(݂,ܰ) from ܤ is called resolving set for the pair (݂, ܰ), if from the fact that 

a) the function ݃ belongs to ܰ, 
b) values of ݂ and ݃ are the same on the set ܩ(݂,ܰ) it follows that ݂ = ݃. 
To restore the table of values of functions it is sufficient to determine the values of function on 

some of its resolving sets. Resolving set ܩ(݂,ܰ) is called a deadlock resolving set for (݂, ܰ), if no 

subset of it is resolving for the pair (݂, ܰ). 
Let us denote by ܪ(ߙ) the set of points ߚ෨ satisfying the condition ߙ ≺  the - (ߙ)ܮ  ෨, and byߚ

set of points ߛ such that ߛ ≺  .ߙ

The upper zero of monotone function ݂(ݔଵ, ,ଶݔ … , (ݔ  is the point ߙ  from ܤ  such that ݂(ߙ) = 0 and ݂൫ߚ෨൯ = 1 for all points ߚ෨ ∈  .(ߙ)ܪ
The lower one of a monotone function ݂(ݔଵ, ,ଶݔ … , (ߙ)݂  such thatߙ ) is a pointݔ = 1 and ݂(ߛ) = 0 for any point ߛ ∈  .(ߙ)ܮ
Let ܼ(݂) denotes the set of all upper zeros of a monotone function	݂(ݔଵ, ,ଶݔ … ,  ), and ܱ(݂), - the set of all lower ones. Each monotone Boolean function has a unique deadlock resolving setݔ

that is included in its all resolving sets (mention that this is not the case for other classes, for instance in 

class of symmetric Boolean functions that we mentioned above). This deadlock resolving set for a 

monotone Boolean function is the set ܩ(݂) = ܼ(݂) ∪ ܱ(݂). 
A brief characterization of the chain split approach is as follows. The ݊-dimensional unit cube ܤ is a binary lattice consisting of 2 vertices that correspond to binary strings of length n, which are 

usually arranged in layers in the way that on the k-th layer there are all those vertices that have k units 

(1 values). Vertices that differ in one coordinate are called adjacent and are connected by an edge. 

Chain in ܤ is a sequence of adjacent vertices. A chain is called growing if it contains at most one 

vertex in one layer.  

G. Hansel [Hansel, 1966] showed that ܤ can be split into growing chains under certain conditions. 

Further, he considered the monotone Boolean functions and built an algorithm of optimal recognition of 

these functions using the constructed chains. Relationship of these constructions with the association 

rules are that frequent subsets with given parameters correspond to a set of zero value vertices of a 

monotone Boolean function.  

Direct use of this technique of Boolean function recognition is difficult because the constructing 

and storing the Hansel chains is a problem of algorithmic exponential complexity – in computation, and 

in memory used.  
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G. Tonoyan [Tonoyan, 1976] offered a computational approach to the work with chains. This is 

fundamentally and significantly simplifying the recognition algorithm although the complexity is still very 

high. The idea is in selecting one particular chain split in the collection of Hansel splits. Then a number 

of functions are introduced that map chains and their elements to each other. In total, this provides the 

necessary information to recognize monotone Boolean functions and eliminates the need in storing the 

complete structure of Hansel chains. This means sensitive economy of memory versus a small 

additional computation over the chain split. 

The global aim of this paper is to introduce the necessary chain split and computation technique 

in terms of problems of search of association rules in large databases and extend this technique to the 

mining problems of numerical attributes. Additionally, it is to take into account one more important 

feature of the problem for mining association rules. It is known that in data mining the number of 

considered elements, n, - is very large. It is also knowing that frequent subsets consist of relatively small 

number of elements. According to this an assumption occurs that there exists a value k such that all 

subsets above this power are not frequent. It turns out that the problem of search of frequent subsets is 

equivalent to decoding of a special class of monotone Boolean functions, which in turn requires an 

expansion of the results mentioned above for general Boolean functions, according to some restrictions 

of the set of functions considered. Extended results are introduced in terms of problem of frequent 

subsets synthesizing, thus providing the way of determining the set of all maximal (largest by inclusion) 

frequent subsets, without considering and constructing their sub-subsets. This avoids the part that 

particularly complicates the building up process. 

 

4. Quantitative Association Rule Mining  

 

In practice, many, if not most, databases contain quantitative data. Unfortunately, the 

definition of categorical association rules does not translate directly to the quantitative case. 

This initiates intensive search for a definition or model of association rules for the case of databases 

with quantitative attributes. [Srikant et al., 1996] made an approach to extend the categorical rule 

definition to include quantitative data. They used some kind of grouping and discretization in intervals of 

values of attributes. Thus, each basic event becomes either a categorical item or a range of numerical 

values. This way, although the base approach is powerful, raises a number of drawbacks in form of 

correct interval composition or as the exponential blowup of the number of the rules generated. 

[Fukuda et al., 1996a] considered a different perspective to quantitative association rule mining 

problem, providing efficient algorithms by the given values of minconf and minsup. They use 

computational geometry methods achieving efficiency even for very large size databases, but the rules 
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considered are plain: with one categorical attribute at the right side. The left side event of the rule have 

the form ܣ ∈ ሾݒଵ,  ଶ. The technique applied use randomizedݒ ,ଵݒ and its values ܣ ଶሿ with an attributeݒ

construction of intervals, combining them into the equi-depth buckets, then joining consecutive buckets 

into the regions of high support. The main target is to provide the required minconf, maximize the region 

support, and to keep the algorithms at linear complexity. 

Next approach to the problem of quantitative association rules is derived by [Aumann et al., 

2003]. The idea used is to compute and apply databases statistical values to increase rule 

interestingness and to combat the flooding of the number of generated rules. This paper well 

summarizes several data mining concepts. First of all, it brings the following useful description: An 

association rule indicates association between a subset of the population described by the left-hand 

side of the rule, and an extraordinary behavior of this subset described by the right-hand side of rule. 

[Webb, 2001] later ([Aumann et al., 2003] appeared as a conference publication at 1999) labelled these 

rules as impact rules to outline the difference to the approach [Srikant et al., 1996]. 

Thus, the introduced general structure of an association rule is of form: 

 

population-subset ⇒extraordinary behavior. (1) 

 

In summary, an association rule considered is a rule of the form: “population-subset”⇒”mean 

of values for the subset”, where population-subset is large enough and the mean of the subset is 

significantly different to the mean of its complement in the database to form an extraordinary event. And 

we indeed foresee the efficient algorithms that are able to generate the required rules of this type. The 

general structure (1) gives rise to many different concrete rule types, determined by the subset class 

used on the left-hand side, and the description of extraordinary used for the right-hand side. Continuing 

in this way [Aumann et al., 2003] constructed two types of rules: Categorical to Quantitative rules with 

an unlimited number of attributes on each side, and Quantitative to Quantitative where both sides 

contain a single attribute only. It is evident that still these are narrow rule sets.  Information on other 

work on quantitative rule mining may be found at [Aumann et al., 2003] and [Hahsler, 2017]. In 

particular, [Fukuda et al., 1996b] and [Yoda et al., 1997] consider rules, from 2 numerical to one 

Boolean attributes, where numerical attributes construct a connected and x-monotone, rectangular, or 

rectilinear areas (in terms of discrete tomography x-monotone means v-convex, and rectilinear means 

hv-convex). The whole diversity of studies, as we see, consider a large number of very restricted types 

of rules, and models, that rarely provide effective computation of the limited number of properly 

optimized rules. Another concern is that these quantitative approaches loose the main essence of the 

Boolean rule mining as is the frequent itemset growing. 
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Let us mention also QuantMiner [Salleb-Aouissi et al., 2007] that is a Quantitative Association 

Rules Mining tool available online. It takes into consideration a set of numerical attributes in the mining 

process without a prior binning/discretization of the data. It exploits a recent and innovative research in 

genetic algorithms. 

 

Concluding, 

(*) 

In this context we aim at constructing (multi&numerical) ⟹ Binary rules under the unique 

supposition of attribute monotonicity. Monotonicity is a natural phenomenon not absolute but it 

can be supposed for any kind of extraordinary behavior. In exceptional cases the attribute value 

domain can be split in several intervals that will support monotonicity. All we suppose is that 

these cases of split for monotonicity are only exceptions and that the individual attribute 

monotonicity integrates in a collective monotonicity of the model. As a consequence, we will 

receive a model based on frequent itemset growing technique. And we will extend the Hansel’s 

chain split technique and the monotone Boolean function recognition as the algorithmic basis of 

our newly quantitative association rule mining model. 

 

Multi-valued cube splitting to unit-cubes 

 

Let ݉ = (݉ଵ,݉ଶ,… ,݉)  be an integer vector of ݊  dimensions, and  Ξ  be the set of 

vertices of the ݊  coordinate discrete grid defined as the Cartesian product of sets Ξ ={0,1, … ,݉ − 1}: Ξ = Ξభ × Ξమ × …× Ξ = ൛(ܽଵ, ܽଶ, … , ܽ):	ܽ ∈ Ξ, ݅ ∈ 1, ݊തതതതതൟ. 
In this section we introduce a special decomposition of Ξ  into the structures isomorphic to binary 

cubes. 

Binary cubes may have different dimensions but their distribution by the cube-size is canonical and the 

cubes in total cover the Ξ  disjointly and entirely. Before descriptions we distinguish several type of 

special vertices in Ξ . 

 

Middle vertices 

 

Vertices ݉ௗା = (ቒభଶ ቓ , ቒమଶ ቓ , … , ቒଶ ቓ)  and ݉ௗି = (ቔభଶ ቕ , ቔమଶ ቕ , … , ቔଶ ቕ)  we call 

middle vertices of Ξ . These two vectors coincide when all ݉ are even values. Being skewed because 
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of the possible differences of values ݉ଵ,݉ଶ, … ,݉, Ξ  has exactly the mentioned one or two special 

points at the center. Even with one odd ݉ the central points are different. Let ݊ஷ denote the number of 

all odd ݉  values. The set of all points with coordinates ݉ௗା = ቒଶ ቓ and/or ݉ௗି = ቔଶ ቕ are 

allocated between the ݉ௗା and ݉ௗି. Number of such vertices is equal to 2ಯ. These points fill a 

structure isomorphic to ܤಯ . Symmetrically, let us denote ݊ − ݊ஷ by ݊ୀ. 

 

Upper vertices, lower vertices 

 

  A vertex (ܽଵ, ܽଶ, … , ܽ) of Ξ  is called upper vertex if (ܽଵ, ܽଶ, … , ܽ) ≥ ݉ௗା. Similarly, 

vertex (ܽଵ, ܽଶ, … , ܽ) of Ξ  is called lower vertex if (ܽଵ, ܽଶ, … , ܽ) ≤ ݉ௗି. Ξ  and Ξෘ  denote the 

sets of all upper and lower vertices of Ξ , correspondingly. It is easy to check, that หΞห = หΞෘห = ∏ ۂ/2݉ہ) + 1)ୀଵ . 

 

Vertical equivalence 

 

Vertices ܽ = (ܽଵ, ܽଶ, … , ܽ) and ෨ܾ = (ܾଵ, ܾଶ, … , ܾ)	of Ξ  are called vertically equivalent if ܽ ∈ {ܾ,݉ − ܾ} for 1 ≤ ݅ ≤ ݊. It is easy to check that this condition is to symmetrically apply to ܽ 

and ෨ܾ , creating a structure of equivalence classes over the Ξ . Let ܸ( ܽ) denote the class of V-

equivalence of vertex ܽ . In ܸ( ܽ)  we distinguish two vertices ොܽ  and ܽු  with coordinates defined as 

follows: ොܽ = ൜ ܽ ݂݅	ܽ ≥ ݉ௗା݉ − ܽ ݂݅	ܽ ≤ ݉ௗି 

 ܽු = ൜݉ − ܽ ݂݅	ܽ ≥ ݉ௗାܽ ݂݅	ܽ ≤ ݉ௗି 

 

Vertices ොܽ and ܽු are the only “two” vertices for an arbitrary	ܸ( ܽ) that belong to Ξ  and Ξෘ , respectively. 

Thus all vertices of sets ܸ( ܽ) can be extended from the upper and/or lower elements of the class of V-

equivalency by component subset inversions (in respect to values ݉). It is evident that the equivalence 

classes of different vertices of Ξ  (or Ξෘ) are disjoint. This construction provides partitioning of Ξ  into หΞห 
equivalence classes uniquely defined by the elements of Ξ .  
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For a given ܽ ∈ Ξ  define an integer ݇ஷ = |{ܽ: ܽ ≠ ݉/2}| . Then |ܸ( ܽ)| = 2ಯ . We 

identify each vertex ߚ෨ ∈ ܸ( ܽ) with an ݊-dimensional binary sequence ߛ, such that ߛ = 1 if and only if ߚ = )ܸ ,ො. In this mannerߙ ܽ) becomes isomorphic to the ݇ஷ-dimensional binary cube ܤಯ: the 0-th 

level contains the lower vertex of ܸ( ܽ) belonging to Ξෘ ; the ݅-th level consists of all vertices of ܸ( ܽ) 
which can be obtained from the lower vertex by applying ݅ number of component inversions.  

 

Thus Ξ  is partitioned into หΞห disjoint equivalence classes - that are identical in structure to 

the binary cubes. It is worth to mention that in usual chain-split (as is the partition of the binary cube in 

[Hansel, 1966]) vertices in chains are composed of neighbor vertices, whereas in the case of cube-split 

edges of the chains connect, in general, vertices that do not belong to the neighbor layers of Ξ . 

 

Let us obtain the general description of the collection of all V-equivalence clusters of Ξ . If all ݉ are odd, sizes of all หΞห subcubes of partition are equal to 2.  

 

When all ݉  are even, this is the case of the unique middle point, and the arbitrary vertex ܽ ∈ Ξ   may have any given number ݇ஷ ≤ ݊ of coordinates that are different from ݉/2. Volumes of 

subcubes corresponding to such points ܽ ∈ Ξ  is 2ಯ. The number of all mentioned points with ݇ஷ 

“un-concentrated” coordinates may be calculated in the following way. It is to construct all different ݊-

vectors that have ݊ − ݇ஷ  coordinates equal to ݉/2  and the reminder ones accept all feasible 

assignments. For ݅  and ݉  number of such independent evaluations equals to ݉/2  taking into 

account that it is to consider the part of upper vertices, those from หΞห. For one collection of fixed ݊ − ݇ஷ coordinates we receive production of terms ݉/2  by the set of coordinates out of the ݊ − ݇ஷ 

that accepted values ݉/2. The total number of ݇ஷ  different upper vertices is equal to the sum of 

products by all elements of ݇ஷ , products of terms ݉/2 , and it involves all selections of the ݇ஷ 

collections. Denote this number by ො߮( ݉ , ݇ஷ),  
 ො߮( ݉ , ݇ஷ) = ∏ ො߮( ݉ , |ூ|ୀಯ	ூ⊆,෦(ܫ = ∏ ∏ ݉/2∈ூூ⊆,෦	|ூ|ୀಯ . 

 

It is easy to check that the combinatorial generating function of these numbers is 

 ො݃( ݉) = ∏ (1 + (݉/2)ݔ)ୀଵ . (2) 
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To obtain the value of ො߮( ݉ , ݇ஷ) it is to maintain the expression of ො݃( ݉) analytically, taking 

the coefficient at the ݔಯ. 

 

Let us also bring the formula 

 	∑ ො߮( ݉ , ݇ஷ)2ಯಯ = ∏ (݉ + 1) , (3) 

 

which is some kind of check of the structural description of cube split ො߮( ݉ , ݇ஷ). ො߮( ݉ , ݇ஷ) is the 

coefficient at ݔಯ of ො݃( ݉) in formula (2). Taking ݔ = 2 in (2) we multiply the coefficients ො߮( ݉ , ݇ஷ) by 2ಯ, that gives the individual summand of the left side formula of (3).  Substitution ݔ = 2 in (2) directly, 

gives the right side formula of (3) proving the check.  

 

Thus we considered two special cases of ݉ , one with all odd and second with all even 

coordinates. The general case that may have as odd as well even coordinates, may be analyzed by a 

simple integration of these two subcases. 

 

Cube-Split Association Rule Mining (CSARM) Algorithm 

 

At this point we suppose that we are given a relational table	ܶ with ݊ attributes: ܣଵ, ,ଶܣ … ,  .ܣ

The row collection composes a stream of transactions where Boolean and quantitative attributes are 

applied together. For an arbitrary categorical attribute, when it is necessary, an additional set of Boolean 

attributes may be generated as indicators of the different value domains of that attribute, but we 

suppose that the table ܶ is already in mixed form of Boolean and quantitative attributes and it will not be 

changed structurally. As we mentioned above, we will consider rules of type ܣ ⇒  where the left side ܤ

attributes are monotonically related to the target event ܤ . Our next supposition (secondary but 

important) is the notion that all transactions are sparse, which means that attributes involved with 

positive (none empty) values are a very limited share of the whole set of attributes. In traditional problem 

of supermarket basket analysis, the entire number of items in supermarket is of course very large, but 

each individual purchase basket contains only a very limited number of items. In these suppositions our 

association rule mining procedure reduces to the monotone binary function recognition algorithm.  

To complete the descriptions of CSARM model, it reminds to redirect the reader to the works 

[Aslanyan et al., 2017] and [Aslanyan et al., 2008] that describe the Boolean monotone recognition in 

details. The basic application of the framework of the Cube-and-Chain Split Data Mining was with help 
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of the new versions of Intrusion Detection system SPARTA [Aslanyan et al., 2011]. SPARTA is mining 

sets of LOG files in a computer system to determine the nonstandard and extraordinary behavior such 

as the intrusion into the system. We just need to bring the general algorithmic framework of the CSARM 

system. 

Let ݂:	ߌ → {0,1} be a monotone function defined with the help of an oracle Ω. 
CSARM algorithm at first splits ߌ  into หΞห  vertical equivalence classes. At second stage 

CSARM maps the monotone binary function ݂  onto the constructed binary cubes. This procedure 

produces a large set of monotone Boolean functions that will be recognized with the help of Hansel’s 

algorithm. 

The final step of CSARM is for integration of the fragments of recognition into a general structure of the 

frequent subsets of the attributes. 

 

CSARM Algorithm. 

 

 Partition of ߌ  into the set of vertical equivalence classes: ଵܸ, ଶܸ, ⋯ , หܸஆห, and compose the  

corresponding binary subcubes: ܧ( ଵܸ), )ܧ ଶܸ),⋯ , )ܧ หܸஆห)  as it is described in previous 

sections (cube split). 
 In every cube ܧ( ܸ)  consider the binary function ݂ : )ܧ ܸ) → {0,1}  , defined as follows: ݂(ߚ) = 1 if and only if ݂(ܾ) = 1, for every ߚ ∈ )ܧ ܸ), where ܾ is the origin of ߚ in Ξ୫୬  .  ݂ 

is monotone and is given with the help of ߗி. Apply the Hansel’s chain split method for the 
recognition ݂,  

 Integrate the results of หΞห binary recognitions procedures to obtain the target function ݂. 

 
Let ߶(݊)  be the minimal number of queries which is sufficient for recognizing arbitrary 

monotone function of ݊ variables defined on ߌାଵ  by the CSARM Algorithm. Then: 
 ߶(݊) = ∑ ൭ ො߮( ݉ , ݇) ∙ ቆܥቔೖమቕ + ାଵቇ൱ୀۂ/ଶہܥ  for all ݉ even, and   

߶(݊) = ∏ ቀାଵଶ ቁ ∙ ቆܥቔమቕ +      .ାଵቇ for all ݉ oddۂ/ଶہܥ

 

Thus we obtained formulas for ߶(݊) in two special cases of ݉ , one with all odd and second 

with all even coordinates. The general case that may have as odd as well even coordinates, may be 

analyzed by a simple integration of these two subcases. 
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