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Abstract: Classical membrane systems with symport/antiport rules observe the conservation law, in the
sense that they compute by changing the places of objects with respect to the membranes, and not by
changing the objects themselves. In these systems the environment plays an active role because the
systems not only send objects to the environment, but also bring objects from the environment. In the
initial configuration of a system, there is a special alphabet whose elements appear in an arbitrary large
number of copies. The ability of these computing devices to have infinite copies of some objects has been
widely exploited in the design of efficient solutions to computationally hard problems.

This paper deals with computational aspects of P systems with symport/antiport and membrane division
rules where there is not an environment having the property mentioned above. Specifically, we establish
the relationships between the polynomial complexity class associated with P systems with symport/antiport,
membrane division rules, and with or without environment. As a consequence, we prove that the role of
the environment is irrelevant in order to solve NP–complete problems in an efficient way.
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Preliminaries

An alphabet Γ is a non–empty set whose elements are called symbols. An ordered finite sequence of
symbols is a string or word. If u and v are strings over Γ, then so is their concatenation uv, obtained by
juxtaposition, that is, writing u and v one after the other. The number of symbols in a string u is the length
of the string and it is denoted by |u|. As usual, the empty string (with length 0) will be denoted by λ. The
set of all strings over an alphabet Γ is denoted by Γ∗. In algebraic terms, Γ∗ is the free monoid generated
by Γ under the operation of concatenation. Subsets of Γ∗ are referred to as languages over Γ. The set
of symbols occurring in a string u ∈ Γ∗ is denoted by alph(u).

The Parikh vector associated with a string u ∈ Γ∗ with respect to the alphabet Σ = {a1, . . . , ar} ⊆ Γ
is ΨΣ(u) = (|u|a1 , . . . , |u|ar), where |u|ai denotes the number of occurrences of symbol ai in string
u. The application ΨΣ is called the Parikh mapping associated with Σ. Notice that, in this definition, the
ordering of the symbols from Σ is relevant. If Σ1 = {ai1 , . . . , air} ⊆ Γ, then we define ΨΣ1(u) =
(|u|ai1 , . . . , |u|air ), for each u ∈ Γ∗.

A multiset m over a set A is a pair (A, f) where f : A → N is a mapping. If m = (A, f) is a
multiset then its support is defined as supp(m) = {x ∈ A | f(x) > 0}. A multiset is empty (resp.
finite) if its support is the empty set (resp. a finite set). If m = (A, f) is a finite multiset over A and
supp(m) = {a1, . . . , ak}, then it will be denoted as m = {af(a1)

1 , . . . , a
f(ak)
k }. That is, superscripts

indicate the multiplicity of each element, and if f(x) = 0 for x ∈ A, then element x is omitted. A



230 International Journal "Information Theories and Applications", Vol. 24, Number 3, (c) 2017

finite multiset m = {af(a1)
1 , . . . , a

f(ak)
k } can also be represented by the string af(a1)

1 . . . a
f(ak)
k over

the alphabet {a1, . . . , ak}. Nevertheless, all permutations of this string identify the same multiset m
precisely. Throughout this paper, we speak about “the finite multiset m” where m is a string, meaning
“the finite multiset represented by the string m”. If m1 = (A, f1), m2 = (A, f2) are multisets over
A, then we define the union of m1 and m2 as m1 + m2 = (A, g), where g = f1 + f2, that is,
g(a) = f1(a) + f2(a), for each a ∈ A.

For any sets A and B the relative complement A \ B of B in A is defined as follows: A \ B = {x ∈
A | x /∈ B}. For any set A we denote |A| the cardinal (number of elements) of A, as usual.

In what follows, we assume the reader is already familiar with the basic notions and terminology of P
systems. For details, see [Păun, 2002].

P systems with symport/antiport rules and membrane division

Cell division is an elegant process that enables organisms to grow and reproduce. Mitosis is a process of
cell division which results in the production of two daughter cells from a single parent cell. Daughter cells
are identical to one another and to the original parent cell. Through a sequence of steps, the replicated
genetic material in a parent cell is equally distributed to two daughter cells. While there are some subtle
differences, mitosis is remarkably similar across organisms.

Before a dividing cell enters mitosis, it undergoes a period of growth where the cell replicates its genetic
material and organelles. Replication is one of the most important functions of a cell. DNA replication is a
simple and precise process that creates two complete strands of DNA (one for each daughter cell) where
only one existed before (from the parent cell).

Next, we introduce an abstraction of these operation in the framework of P systems with symport/antiport
rules. In these models, the membranes are not polarized; the membranes obtained by division have the
same labels as the original membrane, and if a membrane is divided, its interaction with other membranes
or with the environment is locked during the division process. In some sense, this means that while a
membrane is dividing it closes its communication channels.

Definition 1. A P system with symport/antiport rules and membrane division of degree q ≥ 1 is a tuple
Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout), where:

1. Γ is a finite alphabet.

2. E ⊆ Γ.

3. µ is a membrane structure (a rooted tree) whose nodes are injectively labelled with 1, 2 . . . , q.

4. M1, . . . ,Mq are multisets over Γ.

5. R1, · · · ,Rq are finite set of rules of the following forms:

(a) Communication rules: (u, out), (u, in), (u, out; v, in), for u, v multisets over Γ and |u|+
|v| > 0;

(b) Division rules: [a]i → [b]i[c]i, where i 6= iout and a, b, c ∈ Γ;

6. iout ∈ {0, 1, . . . , q}.
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A P system with symport/antiport rules and membrane division

Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout)

of degree q can be viewed as a set of q membranes, labelled by 1, . . . , q, arranged in a hierarchical
structure, such that: (a) M1, . . . ,Mq represent the finite multisets of objects initially placed in the q
membranes of the system; (b) E is the set of objects initially located in the environment of the system, all
of them available in an arbitrary number of copies; and (c) iout represents a distinguished region which
will encode the output of the system. We use the term region i (0 ≤ i ≤ q) to refer to membrane i in the
case 1 ≤ i ≤ q and to refer to the environment in the case i = 0.

A rule of the type (u, out) or (u, in) is called a symport rule. A rule of the type (u, out; v, in), where
|u| + |v| > 0, is called an antiport rule. A P system with symport rules (resp. with antiport rules) is a
P system with only symport rules (resp. only antiport rules) as communication rules. The length of rule
(u, out) or (u, in) (resp. (u, out; v, in)) is defined as |u| (resp. |u|+ |v|).

An instantaneous description or a configuration at an instant t of a P system with symport/antiport and
membrane division is described by all multisets of objects over Γ associated with all the membranes
present in the system, and the multiset of objects over Γ − E associated with the environment at that
moment. Recall that there are infinitely many copies of objects from E in the environment, and hence this
set is not properly changed along the computation. The initial configuration is (M1, · · · ,Mq; ∅).

A rule (u, out) ∈ Ri is applicable to a configuration C at an instant t if membrane i is in C and multiset
u is contained in such membrane. When applying a rule (u, out) ∈ Ri, the objects specified by u are
sent out of membrane i into the region immediately outside (its father), this can be the environment in the
case of the skin membrane.

A rule (u, in) ∈ Ri is applicable to a configuration C at an instant t if membrane i is in C and multiset u
is contained in the immediately upper region (its father), this is the environment in the case when the rule
is associated with the skin membrane (the root of the tree µ). When applying a rule (u, in) ∈ Ri, the
multiset of objects u enters the region defined by the membrane i from the immediately upper region (its
father), this is the environment in the case when the rule is associated with the skin membrane (the root
of the tree µ).

A rule (u, out; v, in) ∈ Ri is applicable to a configuration C at an instant t if membrane i is in C and
multiset u is contained in such membrane, and multiset v is contained in the immediately upper region (its
father). When applying a rule (u, out; v, in) ∈ Ri, the objects specified by u are sent out of membrane
i into the region immediately outside (its father), at the same time bringing the objects specified by v into
membrane i.

A rule [a]i → [b]i[c]i ∈ Ri is applicable to a configuration C at an instant t if the following holds: (a)
membrane i is in C; (b) object a is contained in such membrane; and (c) membrane i is neither the skin
membrane nor the output membrane (if iout ∈ {1, . . . , q}). When applying a division rule [a]i → [b]i[c]i,
under the influence of object a, the membrane with label i is divided into two membranes with the same
label; in the first copy, object a is replaced by object b, in the second one, object a is replaced by object c;
all the other objects residing in membrane i are replicated and copies of them are placed in the two new
membranes. The output membrane iout cannot be divided.

The rules of a P system with symport/antiport rules and membrane division are applied in a non-deterministic
maximally parallel manner (at each step we apply a multiset of rules which is maximal, no further applicable
rule can be added), with the following important remark: if a membrane divides, then the division rule is
the only one which is applied for that membrane at that step; the objects inside that membrane do not
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evolve by means of communication rules. In other words, before division a membrane interrupts all its
communication channels with the other membranes and with the environment. The new membranes
resulting from division will interact with other membranes or with the environment only at the next step –
providing that they do not divide once again. The label of a membrane precisely identifies the rules which
can be applied to it.

Let us fix a P system with symport/antiport rules and membrane division Π. We say that configuration
C1 yields configuration C2 in one transition step, denoted by C1 ⇒Π C2, if we can pass from C1 to C2 by
applying the rules fromR1 ∪ · · · ∪ Rq following the previous remarks. A computation of Π is a (finite or
infinite) sequence of configurations such that:

1. the first term of the sequence is the initial configuration of the system;

2. each non-initial configuration of the sequence is obtained from the previous configuration by applying
rules of the system in a maximally parallel manner with the restrictions previously mentioned; and

3. if the sequence is finite (called halting computation) then the last term of the sequence is a halting
configuration (a configuration where no rule of the system is applicable to it).

All computations start from an initial configuration and proceed as stated above; only halting computations
give a result, which is encoded by the objects present in the output region iout in the halting configuration.

If C = {Ct}t<r+1 of Π (r ∈ IN) is a halting computation, then the length of C, denoted by |C|, is r, that
is, |C| is the number of non-initial configurations which appear in the finite sequence C. We denote by
Ct(i), 1 ≤ i ≤ q, the multiset of objects over Γ contained in all membranes labelled by i (by applying
division rules different membranes with the same label can be created) at configuration Ct. We denote
by Ct(0) the multiset of objects over Γ \ E contained in the environment at configuration Ct. Finally, we
denote by C∗t the multiset Ct(0) + Ct(1) + · · ·+ Ct(q).

Definition 2. A P system with symport/antiport rules and membrane division

Π = (Γ, E , µ,M1, . . . ,Mq,R1, · · · ,Rq, iout),

where E = ∅, is called a P system with symport/antiport rules, membrane division and without environment.

Usually, we omit the alphabet of the environment in the tuple describing such P system.

Polynomial complexity classes of P systems with symport/antiport

Let us recall that a decision problem is a pair (IX , θX) where IX is a language over a finite alphabet
(whose elements are called instances) and θX is a total Boolean function over IX . Many abstract
problems are not decision problems. For example, in combinatorial optimization problems some value
must be optimized (minimized or maximized). In order to deal with such problems, they can be transformed
into roughly equivalent decision problems by supplying a target/threshold value for the quantity to be
optimized, and then asking whether this value can be attained.

There exists a correspondence between decision problems and formal languages. So that, the solvability
of decision problems is defined through the recognition of the languages associated with them.

In order to study the computing efficiency of membrane systems, the notions from classical computational
complexity theory are adapted for membrane computing, and a special class of cell-like P systems is
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introduced in [Pérez-Jiménez, Romero-Jiménez and Sancho-Caparrini, 2006]: recognizer P systems
(called accepting P systems in a previous paper [Pérez-Jiménez, Romero-Jiménez and Sancho-Caparrini,
2003]).

Definition 3. A recognizer P system with symport/antiport rules and membrane division of degree q ≥ 1
is a tuple

Π = (Γ, E ,Σ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

where:

• (Γ, E ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with symport/antiport rules and membrane
division of degree q ≥ 1, as defined in the previous section;

• The working alphabet Γ has two distinguished objects yes and no, at least one copy of them
present in some initial multisetsM1, . . . ,Mq, but none of them is present in E ;

• Σ is an (input) alphabet strictly contained in Γ such that E ∩ Σ = ∅;

• M1, . . . ,Mq are multisets over Γ \ Σ;

• iin ∈ {1, . . . , q} is the input membrane;

• The output region iout is the environment;

• All computations halt;

• If C is a computation of Π, then either object yes or object no (but not both) must have been
released into the output region (the environment), and only at the last step of the computation.

Definition 4. A recognizer P system with symport/antiport rules, membrane division and without environment
of degree q ≥ 1 is a tuple

Π = (Γ, E ,Σ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

where:

• (Γ, E ,Σ,M1, . . . ,Mq,R1, · · · ,Rq, iout) is a P system with symport/antiport rules and membrane
division.

• The working alphabet Γ has two distinguished objects yes and no, at least one copy of them
present in some initial multisetsM1, . . . ,Mq, but none of them is present in E .

• E = ∅.

• Σ is an (input) alphabet strictly contained in Γ such that E ∩ Σ = ∅.

• M1, . . . ,Mq are multisets over Γ \ Σ.

• iin ∈ {1, . . . , q} is the input membrane.

• iout ∈ {1, . . . , q} is the output membrane.

• All computations halt.
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• If C is a computation of Π, then either object yes or object no (but not both) must have been
released into the output region, and only at the last step of the computation.

For each multiset m ∈ Σ∗, the computation of the system Π with input m ∈ Σ∗ starts from the
configuration of the form (M1, . . . ,Miin + m, . . . ,Mq; ∅), that is, the input multiset m has been
added to the contents of the input membrane iin, and we denote it by Π + m. Therefore, we have
an initial configuration associated with each input multiset m (over the input alphabet Σ) in this kind of
systems.

Given a recognizer P system with symport/antiport rules (with or without environment) and a halting
computation C = {Ct}t<r+1 of Π (r ∈ IN), we define the result of C as follows:

Output(C) =


yes, if Ψ{yes,no}(Mr,iout) = (1, 0) ∧

Ψ{yes,no}(Mt,iout) = (0, 0) for t = 0, . . . , r − 1
no, if Ψ{yes,no}(Mr,iout) = (0, 1) ∧

Ψ{yes,no}(Mt,iout) = (0, 0) for t = 0, . . . , r − 1

where Ψ is the Parikh mapping, and Mt,iout is the multiset over Γ \ E associated with the output region
at the configuration Ct, in particular, Mr,iout is the multiset over Γ \ E associated with the output region
at the halting configuration Cr.

We say that a computation C is an accepting computation (respectively, rejecting computation) ifOutput(C) =
yes (respectively, Output(C) = no), that is, if object yes (respectively, object no) appears in the
output region associated with the corresponding halting configuration of C, and neither object yes nor no
appears in the output region associated with any non–halting configuration of C.

Let us notice that if a recognizer P system

Π = (Γ, E ,Σ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

has a symport rule of the type (i, λ/u, 0) then alph(u) ∩ (Γ \ E) 6= ∅, that is, the multiset u must
contains some object from Γ \ E because on the contrary, all computations of Π would be not halting.

For each natural number k ≥ 1, we denote by CDC(k) (respectively, CDS(k) or CDA(k)) the class of
recognizer P systems with membrane division and with symport/antiport rules (respectively, allowing only
symport or antiport rules) of length at most k. In the case of P systems without environment, we denote
by ĈDC(k) (ĈDS(k) or ĈDA(k) respectively) the class of recognizer P systems with membrane
division without environment and with symport/antiport rules (allowing only symport or only antiport rules
respectively) of length at most k.

Polynomial complexity classes of P systems with symport/antiport

In this section, we define what solving a decision problem in the framework of P systems with symport/antiport
rules in a uniform and efficient way, means. Bearing in mind that they provide devices with a finite
description, a numerable family of membrane systems will be necessary in order to solve a decision
problem.

Definition 5. We say that a decision problemX = (IX , θX) is solvable in a uniform way and polynomial
time by a family Π = {Π(n) | n ∈ IN} of recognizer P systems with symport/antiport rules and
membrane division (with or without environment) if the following holds:
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• The family Π is polynomially uniform by Turing machines, that is, there exists a deterministic Turing
machine working in polynomial time which constructs the system Π(n) from n ∈ IN.

• There exists a pair (cod, s) of polynomial-time computable functions over IX such that:

− for each instance u ∈ IX , s(u) is a natural number, and cod(u) is an input multiset of the
system Π(s(u));

− for each n ∈ IN, s−1(n) is a finite set;

− the family Π is polynomially bounded with regard to (X, cod, s), that is, there exists a
polynomial function p, such that for each u ∈ IX every computation of Π(s(u)) with input
cod(u) is halting and it performs at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX , if there exists an
accepting computation of Π(s(u)) with input cod(u), then θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX , if θX(u) = 1,
then every computation of Π(s(u)) with input cod(u) is an accepting one.

From the soundness and completeness conditions above we deduce that every P system Π(n) is confluent,
in the following sense: every computation of a system with the same input multiset must always give the
same answer.

Let R be a class of recognizer P systems with symport/antiport rules. We denote by PMCR the set
of all decision problems which can be solved in a uniform way and polynomial time by means of families
of systems from R. The class PMCR is closed under complement and polynomial–time reductions
[Pérez-Jiménez, Romero-Jiménez and Sancho-Caparrini, 2003].

In what follows, we prove two technical results concerning recognizer P systems.

Proposition 1. Let Π = (Γ, E ,Σ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout) be a recognizer P systems
with symport/antiport rules with length at most k, k ≥ 2, and without membrane division. Let M =
|M1 + · · ·+Mq| and let C = (C0, C1, . . . , Cm) be a computation of Π Then, |C∗0 | = M , and for each
t, 0 ≤ t < m, we have

|C∗t+1| ≤ |C∗t | · k, and |C∗t+1| ≤M · kt

Proof: Obviously, |C∗0 | = |C0(0) + C0(1) + · · · + C0(q)| = |M1 + · · · +Mq| = M . Suppose
0 ≤ t < m, and let us compute C∗t+1 = Ct+1(0) + Ct+1(1) + · · ·+ Ct+1(q). Bearing in mind that only
the skin membrane can send and receive objects from the environment, we have

Ct+1(0) + Ct+1(2) + Ct+1(3) + · · ·+ Ct+1(q) ⊆ Ct(0) + Ct(1) + · · ·+ Ct(q)

Next, let us see what objects membrane 1 can receive at step t+ 1.

• On the one hand, membrane 1 can receive objects from Ct(0).

• On the other hand, membrane 1 can receive objects from E by means of rules in the skin membrane
of the types:

– (a ei1 . . . eir , in) with a ∈ Ct(0) and ei1 , . . . , eir ∈ E , r ≤ k − 1.

– (a, out; ei1 . . . eir , in) with a ∈ Ct(1) and ei1 , . . . , eir ∈ E , r ≤ k − 1.
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Then, |Ct+1(1)| ≤ |Ct(0) + Ct(1)| · (k − 1). So, we have

|C∗t+1| = |Ct+1(0) + Ct+1(2) + Ct+1(3) + · · ·+ Ct+1(q)|+ |Ct+1(1)|
≤ |Ct(0) + Ct(1) + · · ·+ Ct(q)|+ |Ct(0) + Ct(1)| · (k − 1)
≤ |C∗t |+ |C∗t | · (k − 1) ≤ |C∗t | · k

Finally, let us see that |C∗t+1| ≤ M · kt by induction on t. For t = 1 the result is trivial because of
|C∗1 | ≤ (|C∗0 |+M) · (k − 1) = 2M · (k − 1).

Let t be such that 1 < t < m and the result holds for t. Then,

|C∗t+1| ≤ |C∗t | · k
h.i

≤ M · kt−1 · k ≤M · kt

�

Proposition 2. Let Π = {Π(n) | n ∈ IN} a family of recognizer P systems from CDC(k), where
k ≥ 2, solving a decision problem X = (IX , θX) in polynomial time according to Definition 5. Let
(cod, s) be a polynomial encoding associated with that solution. There exists a polynomial function r(n)
such that for each instance u ∈ IX , 2r(|u|) is an upper bound of the number of objects in all membranes
of the system Π(s(u)) + cod(u) along any computation.

Proof: Let p(n) be a polynomial function such that for each u ∈ IX every computation of Π(s(u)) +
cod(u) is halting and it performs at most p(|u|) steps.

Let u ∈ IX be an instance of X and

Π(s(u)) + cod(u) = (Γ, E ,Σ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

Let M = |M1 + · · ·+Mq|. Let C = (C0, C1, . . . , Cm), 0 ≤ m ≤ p(|u|), be a computation of Π.

First, let us suppose that we apply only communication rules at m consecutive transition steps. From
Proposition 1 we deduce that |C∗0 | = M and |C∗t+1| ≤M ·kt, for each t, 0 ≤ t < m. Thus, if we apply
in a consecutive way the maximum possible number of communication rules (without applying any division
rules) to the system Π(s(u)) + cod(u), in any instant of any computation of the system, M · kp(|u|) is
an upper bound of the number of objects in the whole system.

Now, let us consider the effect of applying in a consecutive way the maximum possible number of division
rules (without applying any communication rules) to the system Π(s(u)) + cod(u) when the initial
configuration has M · kp(|u|) objects. After that, an upper bound of the number of objects in the whole
system by any computation is M · kp(|u|) · 2p(|u|) · p(|u|). Then, we consider a polynomial function r(n)
such that r(|u|) ≥ log(M) + p(|u|) · (1 + log k) + log(p(|u|)), for each instance u ∈ IX . The
polynomial function r(n) fulfills the property required.

�

Corollary 1. Let Π = {Π(n) | n ∈ IN} a family of recognizer P systems with symport/antiport rules and
membrane division, solving a decision problem X = (IX , θX) in polynomial time according to Definition
5. Let (cod, s) a polynomial encoding associated with that solution. Then, there exists a polynomial
function r(n) such that for each instance u ∈ IX , 2r(|u|) is an upper bound of the number of objects from
E which are moved from the environment to all membranes of the system Π(s(u)) + cod(u) along any
computation.
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Proof: It suffices to note that from Proposition 2 there exists a polynomial function r(n) such that for
each instance u ∈ IX , 2r(|u|) is an upper bound of the number of objects in all membranes of the system
Π(s(u)) + cod(u).

�

Simulating systems from CDC(k) by means of systems from ĈDC(k)

The goal of this section is to show that any P system with symport/antiport rules and membrane division
can be simulated by a P system symport/antiport rules, membrane division and without environment, in
an efficient way.

First of all, we define the meaning of efficient simulations in the framework of recognizer P systems with
symport/antiport rules.

Definition 6. Let Π and Π′ be recognizer P systems with symport/antiport rules. We say that Π′ simulates
Π in an efficient way if the following holds:

1. Π′ can be constructed from Π by a deterministic Turing machine working in polynomial time.

2. There exists an injective function, f , from the set Comp(Π) of computations of Π onto the set
Comp(Π′) of computations of Π′ such that:

? There exists a deterministic Turing machine that constructs computation f(C) from computation
C in polynomial time.

? A computation C ∈ Comp(Π) is an accepting computation if and only if f(C) ∈ Comp(Π′)
is an accepting one.

? There exists a polynomial function p(n) such that for each C ∈ Comp(Π) we have |f(C)| ≤
p(|C|).

Now, for every family of recognizer P system with symport/antiport rules and membrane division solving
a decision problem, we design a family of recognizer P systems with symport/antiport rules, membrane
division and without environment efficiently simulating it, according to Definition 6.

In what follows throughout this Section, let Π = {Π(n) | n ∈ IN} a family of recognizer P systems with
symport/antiport rules and membrane division solving a decision problem X = (IX , θX) in polynomial
time according to Definition 5, and let r(n) be a polynomial function such that for each instance u ∈ IX ,
2r(|u|) is an upper bound of the number of objects from E which are moved from the environment to all
membranes of the system by any computation of Π(s(u)) + cod(u).

Definition 7. For each n ∈ IN, let

Π(n) = (Γ, E ,Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

an element of the previous family Π, and for the sake of simplicity we denote r instead of r(n) and 1 is
the label of the skin membrane. Let us consider the recognizer P system with symport/antiport rules of
degree q1 = 1 + q · (r + 2) + |E|, with membrane division and without environment

S(Π(n)) = (Γ′,Σ′, µ′,M′
0,M′

1, . . . ,M′
q1
,R′0,R′1, . . . ,R′q1 , i

′
in, i

′
out)

defined as follows:
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• Γ′ = Γ ∪ {αi : 0 ≤ i ≤ r − 1}.

• Σ′ = Σ.

• Each membrane i ∈ {1, . . . , q} of Π provides a membrane of S(Π(n)) with the same label. In
addition, S(Π(n)) has:

? r + 1 new membranes, labelled by (i, 0), (i, 1), . . . , (i, r), respectively, for each i ∈
{1, . . . , q}.

? A distinguished membrane labelled by 0.

? A new membrane, labelled by lb, for each b ∈ E .

• µ′ is the rooted tree obtained from µ as follows:

? Membrane 0 is the root of µ′ and it is the father of the root of µ.

? For each b ∈ E , membrane 0 is the father of membrane lb.

? We consider a linear structure whose nodes are (i, 0), (i, 1), . . . , (i, r) and such that (i, j)
is the father of (i, j − 1), for each 1 ≤ i ≤ q and 1 ≤ j ≤ r.

? For each membrane i of µ we add the previous linear structure being membrane i the father
of membrane (i, r).

• Initial multisets:M′
0 = ∅,M′

lb
= {α0}, for each b ∈ E , and

(1 ≤ i ≤ q)


M′

(i,0) = Mi

M′
(i,1) = ∅

. . . . . .
M′

(i,r) = ∅
M′

i = ∅

• Set of rules:

R′0 ∪R′1 ∪ · · · ∪ R′q ∪ {R′(i,j) : 1 ≤ i ≤ q, 0 ≤ j ≤ r} ∪ {R′lb : b ∈ E}

whereR′0 = ∅,R′i = Ri for 1 ≤ i ≤ q, and

R′(i,j) = {
(
a, out;λ, in) : a ∈ Γ}, for 1 ≤ i ≤ q ∧ 0 ≤ j ≤ r}

R′lb = {[αj]lb → [αj+1]lb [αj+1]lb : 0 ≤ j ≤ r − 2} ∪
{[αr−1]lb → [b]lb [b]lb , (lb, out;λ, in)}, for b ∈ E

• i′in = (iin, 0), and i′out = 0.

Let us notice that S(Π(n)) can be considered as an extension of Π(n) without environment, in the
following sense:

? Γ ⊆ Γ′,Σ ⊆ Σ′ and E = ∅.

? Each membrane in Π is also a membrane in S(Π(n)).
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? There is a distinguished membrane in S(Π(n)) labelled by 0 which plays the role of environment
of Π(n).

? µ is a subtree of µ′.

? R ⊆ R′, and now 0 is the label of a “ordinary membrane” in S(Π(n)).

Next, we analyze the structure of the computations of system S(Π(n)) and we compare them with the
computations of Π(n).

Lemma 1. Let C ′ = (C ′0, C ′1, . . . ) be a computation of S(Π(n)). For each t (1 ≤ t ≤ r) the following
holds:

• C ′t(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ r we have:

C ′t(i, j) =

{
Mi, if j = t
∅, if j 6= t

• For each b ∈ E , there exist 2t membranes labelled by lb whose father is membrane 0 and their
content is:

C ′t(lb) =

{
{αt}, if 1 ≤ t ≤ r − 1
{b}, if t = r

Proof: By induction on t.

Let us start with the basic case t = 1. The initial configuration of system S(Π(n)) is the following:

• C ′0(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q we have C ′0(i, 0) =Mi, and C ′0(i, j) = ∅, for 1 ≤ j ≤ r.

• For each b ∈ E , there exists only one membrane labelled by lb whose contents is {α0}.

At configuration C ′0, only the following rules are applicable:

• [α0]lb → [α1]lb [α1]lb , for each b ∈ E .

•
(
a, out;λ, in

)
∈ R(i,0), for each a ∈ supp(Mi).

Thus,

(a) For each i (1 ≤ i ≤ q) we have:
C ′1(i) = ∅
C ′1(0) = ∅
C ′1(i, 0) = ∅
C ′1(i, 1) = Mi

C ′1(i, j) = ∅, for 2 ≤ j ≤ r
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(b) For each b ∈ E , there are 2 membranes labelled by lb whose father is membrane 0 and their
content is {α1}.

Hence, the result holds for t = 1.

By induction hypothesis, let t be such that 1 ≤ t < r, and let us suppose the result holds for t, that is,

• C ′t(i) = ∅, for 0 ≤ i ≤ q.

• For each 1 ≤ i ≤ q, and 0 ≤ j ≤ r we have:

C ′t(i, j) =

{
Mi, if j = t
∅, if j 6= t

• For each b ∈ E , there exist 2t membranes labelled by lb whose father is membrane 0 and their
content is C ′t(lb) = {αt} (because t ≤ r − 1).

Then, at configuration C ′t only the following rules are applicable:

(1) If t ≤ r − 2, the rules [αt]lb → [αt+1]lb [αt+1]lb , for each b ∈ E .

(2) If t = r − 1, the rules [αt]lb → [b]lb [b]lb , for each b ∈ E .

(3)
(
a, out;λ, in

)
∈ R(i,t), for each a ∈ supp(Mi).

From the application of rules of types (1) or (2) at configuration C ′t, we deduce that there are 2t+1

membranes labelled by lb in C ′t+1, for each b ∈ E , whose father is membrane 0 and their content is
{αt+1}, if t ≤ r − 2, or {b}, if t = r − 1.

From the application of rules of type (3) at configuration C ′t, we deduce that

C ′t+1(i, j) =

{
Mi, if j = t+ 1
∅, if 0 ≤ j ≤ r ∧ j 6= t+ 1

Bearing in mind that no other rule of system S(Π(n)) is applicable, we deduce that C ′t+1(i) = ∅, for
0 ≤ i ≤ q.

This completes the proof of this Lemma.

�

Lemma 2. Let C ′ = (C ′0, C ′1, . . . ) be a computation of the P system S(Π(n)). Configuration C ′r+1 is the
following:

(1) C ′r+1(0) = b2r

1 . . . b2r

α , where E = {b1, . . . , bα}.

(2) C ′r+1(i) =Mi = C0(i), for 1 ≤ i ≤ q.

(3) C ′r+1(i, j) = ∅, for 1 ≤ i ≤ q, 0 ≤ j ≤ r.

(4) For each b ∈ E , there exist 2r membranes labelled by lb whose father is membrane 0 and their
content is empty.
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Proof: From Lemma 1, the configuration C ′r is the following:

• C ′r(i) = ∅, for 0 ≤ i ≤ q.

• For each i (1 ≤ i ≤ q) we have

C ′r(i, j) =

{
Mi, if j = r
∅, if j 6= r

• For each b ∈ E , there exist 2r membranes labelled by lb whose father is membrane 0 and their
content is {b}.

At configuration C ′r only the following rules are applicable:

•
(
a, out;λ, in

)
∈ R(i,r), for each a ∈ Γ ∩ supp(Mi).

•
(
b, out;λ, in

)
∈ Rlb , for each b ∈ E .

Thus,

• C ′r+1(0) = b2r

1 . . . b2r

α , where E = {b1, . . . , bα}.

• C ′r+1(i) =Mi = C0(i), for 1 ≤ i ≤ q.

• C ′r+1(i, j) = ∅ , for 1 ≤ i ≤ q and 0 ≤ j ≤ r.

• For each b ∈ E , there exist 2r membranes labelled by lb whose father is membrane 0 and their
content is empty.

�

Definition 8. Let C = (C0, C1, . . . , Cm) be a halting computation of Π(n). Then we define the computation
S(C) = (C ′0, C ′1, . . . , C ′r, C ′r+1, . . . , C ′r+1+m) of S(Π(n)) as follows:

(1) The initial configuration is:
C ′0(i) = ∅, for 0 ≤ i ≤ q
C ′0(i, 0) = C0(i), for 1 ≤ i ≤ q
C ′0(i, j) = ∅, for 1 ≤ i ≤ q and 1 ≤ j ≤ r
C ′0(lb) = α0, for each b ∈ E

(2) The configuration C ′t, for 1 ≤ t ≤ r, is described by Lemma 1.

(3) The configuration C ′r+1 is described by Lemma 2.

(4) The configuration C ′r+1+s, for 0 ≤ s ≤ m, coincides with the configuration Cs of Π, that is,
Cs(i) = C ′r+1+s(i), for 1 ≤ i ≤ q. The content of the remaining membranes (excluding
membrane 0) at configuration C ′r+1+s is equal to the content of that membrane at configuration
C ′r+1, that is, these membranes do not evolve after step r + 1.
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That is, every computation C of Π(n) can be “reproduced” by a computation S(C) of S(Π(n)) with a
delay: from step r + 1 to step r + 1 + m, the computation S(C) restricted to membranes 1, . . . , q
provides the computation C of Π(n).

From Lemma 1 and Lemma 2 we deduce the following:

(a) S(C) is a computation of S(Π(n)).

(b) S is an injective function from Comp(Π(n)) onto Comp(S(Π(n))).

Proposition 3. The P system S(Π(n)) defined in Definition 7 simulates Π(n) in an efficient way.

Proof: In order to show that S(Π(n)) can be constructed from Π(n) by a deterministic Turing machine
working in polynomial time, it is enough to note that the amount of resources needed to construct S(Π(n))
from Π(n) is polynomial in the size of the initial resources of Π(n). Indeed,

1. The size of the alphabet of S(Π(n)) is |Γ′| = |Γ|+ r.

2. The initial number of membranes of S(Π(n)) is 1 + q · (r + 2) + |E|.

3. The initial number of objects of S(Π(n)) is the initial number of objects of Π(n) plus |E|.

4. The number of rules of S(Π(n)) is |R′| = |R|+ (r + 1) · |E|+ |Γ| · q · (r + 1).

5. The maximal length of a communication rule of S(Π(n)) is equal to the maximal length of a
communication rule of Π(n).

From Lemma 1 and Lemma 2 we deduce that:

(a) Every computation C ′ of S(Π(n)) has associated a computation C of Π(n) such that S(C) = C ′
in a natural way.

(b) The function S is injective.

(c) A computation C of Π(n) is an accepting computation if and only if S(C) is an accepting computation
of S(Π(n)).

Finally, let us notice that if C is a computation of Π(n) with length m, then S(C) is a computation of
S(Π(n)) with length r + 1 +m.

�

Computational complexity classes of P systems with membrane division and without
environment

In this Section, we analyze the role of the environment in the efficiency of P systems with membrane
division. That is, we study the ability of these P systems with respect to the computational efficiency when
the alphabet of the environment is an empty set.

Theorem 1. For each k ∈ IN we have PMCCDC(k+1) = PMC
ĈDC(k+1)

.
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Proof: Let us recall that PMCCDC(1) = P (see [Macías-Ramos, Song, Pan, and Pérez-Jiménez,
2017] for details). Then,

P ⊆ PMC
ĈDC(1)

⊆ PMCCDC(1) = P

Thus, the result holds for k = 0. Let us show the result holds for k ≥ 1. Since ĈDC(k + 1) ⊆
CDC(k + 1) it suffices to prove that PMCCDC(k+1) ⊆ PMC

ĈDC(k+1)
. For that, let X ∈

PMCCDC(k+1).

Let {Π(n) | n ∈ N} be a family of P systems from CDC(k + 1) solving X according to Definition 5.
Let (cod, s) be a polynomial encoding associated with that solution. Let u ∈ IX be an instance of the
problemX that will be processed by the system Π(s(u)) + cod(u). According to Proposition 2, let r(n)
be a polynomial function that 2r(|u|) is an upper bound of the number of objects from E which are moved
from the environment to all membranes of the system by any computation of

Π(s(u)) + cod(u) = (Γ, E ,Σ,M1, . . . ,Miin + cod(u), . . . ,Mq1 ,R, iin, iout)

Then, we consider the P system without environment

S(Π(s(u))) + cod(u) = (Γ′,Σ′,M′
0,M′

1, . . . ,M′
iin

+ cod(u), . . . ,M′
q1
,R′, i′in, i′out)

according to Definition 7, where q1 = 1 + q · (r(|u|) + 2) + |E|.

Therefore, S(Π(s(u))) + cod(u) is a P system from ĈDC(k + 1) such that verifies the following:

• A distinguished membrane labelled by 0 has been considered, which will play the role of the
environment at the system Π(s(u)) + cod(u).

• At the initial configuration, it has enough objects in membrane 0 in order to simulate the behaviour
of the environment of the system Π(s(u))) + cod(u).

• After r(n) + 1 step, computations of Π(s(u)) + cod(u) are reproduced by the computations of
S(Π(s(u))) + cod(u) exactly.

Let us suppose that E = {b1, . . . , bα}. In order to simulate Π(s(u)) + cod(u) by a P system without
environment in an efficient way, we need to have enough objects in the membrane of S(Π(s(u))) +
cod(u) labelled by 0 available. Specifically, 2r(n) objects in that membrane are enough.

In order to start the simulation of any computation C of Π(s(u)) + cod(u), it would be enough to have
2r(n) copies of each object bj ∈ E in the membrane of S(Π(s(u))) + cod(u) labelled by 0. For this
purpose,

• For each b ∈ E we consider a membrane in S(Π(s(u))) + cod(u) labelled by lb which only
contains object α0 initially. We also consider the following rules:

– [αj]lb → [αj+1]lb [αj+1]lb , for 0 ≤ j ≤ r(|u|)− 2,

– [αp(n)−1]lb → [b]lb [b]lb ,

– (lb, b/λ, 0).

• By applying the previous rules, after r(|u|) transition steps we get 2r(|u|) membranes labelled by
lb, for each b ∈ E in such a way that each of them contains only object b. Finally, by applying the
third rule we get 2r(|u|) copies of objects b in membrane 0, for each b ∈ E .
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Therefore, after the execution of r(|u|)+1 transition steps in each computation of S(Π(s(u)))+cod(u)
in membrane 0 of the corresponding configuration, we have 2r(|u|) copies of each object b ∈ E . This
number of copies is enough to simulate any computation C of Π(s(u)) + cod(u) through the system
S(Π(s(u)) + cod(u)).

From Proposition 3 we deduce that the family {S(Π(n))| n ∈ N} solvesX in polynomial time according
to Definition 5. Hence, X ∈ PMC

ĈDC(k+1)
.

�

Conclusions and Further Works

Initial configurations of ordinary P systems with symport/antiport rules have an arbitrarily large amount of
copies of some kind of objects belonging to a distinguished alphabet which specifies the environment of
the system.

The previous condition is no too nice from the computational complexity point of view. In this paper, we
show that in P systems with with symport/antiport rules and membrane division the environment can be
“removed” without a loss of efficiency.
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