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Abstract: Creation of advanced steganalysis methods for reliably detection of hidden messages in 

widespread multimedia files, such as digital images, is topical task today. One of the key requirements 

to such methods is ability to reveal the stego files even in case of limited or absent information relating 

to used embedding methods. For solving this task there was proposed the multiclass stegdetector, 

based on applying the powerful methods of digital image structural analysis. Obtained earlier results 

confirmed the high efficiency of proposed stegdetector by message hiding in cover image’s 

transformation domain. There is conducted analysis of stegdetector performance in case of message 

hiding according to advanced adaptive steganogaphic methods, such as HILL, MiPOD and Synch 

algorithms. It is shown that usage the “extended” cover image model, includes not only statistical, but 

also correlation and fractal features, gives opportunity to improve the detection accuracy of stegdetector 

in most difficult cases of image steganalysis. 
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Introduction 

Protection of private as well as state-owned sensitive information is urgent problem today. Considerable 

quantity of freely available malware, ransomware and operation system’s backdoors packets allow any 

users of Internet to create the personal toolbox for attacking not only private computers, but also the 

information infrastructures systems of governmental agencies as well as private corporations. Distinctive 

feature of such attacks is wide usage of complicated methods for creation the hidden communication 

[Cisco, 2015; Cisco, 2016; FireEye, 2015]. These channels are integrated into information flows in 

telecommunication systems, like email, social networks, file sharing networks, which complicates the 

issue of theirs detection and counteraction by state security analytics agencies.  

It is worth noting that in most cases information relating to data embedding process is limited or even 

absent. Therefore, applying of known signature or statistical steganalysis methods does allow providing 

the high accuracy of stego files detection. That is why development of new steganalysis approaches, 
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which allow detecting the hidden messages in case of limitation or absence the advance information 

regard used steganography technique, are required to be developed. 

 

Related work 

For revealing the hidden communication channels there are proposed considerable numbers of targeted 

steganalysis methods, based on usage the signature database and statistical models of cover files, 

such as digital images [Fridrich, 2009; Cox et al, 2008; Böhme, 2010]. Advantage of these methods is 

high accuracy of hidden messages (stego files), but only when embedding method is a priory known. 

For improvement the performance of signature and statistical stegdetectors in case of limited 

information relating to used steganalysis technique, there was proposed to use the rich cover model 

[Fridrich and Kodovsky, 2012a], obtained by merging of several statistical models in spatial as well as 

JPEG domains. Nevertheless practical usage of proposed stegdetectors is limited due to ample quantity 

of cover’s model parameters which should be computed, for instance 34,671 parameters for SRM 

[Fridrich and Kodovsky, 2012a] and 35,263 features for J+SRM [Fridrich and Kodovský, 2012b] models. 

Alternative approach to stego image detection is based on usage the simplified or approximate cover 

models [Avcibas et al, 2003; Farid, 2001]. Obtained universal (blind) stegdetectors give opportunity to 

overcome mentioned drawbacks of targeted steganalysis methods and reveal the hidden messages 

when there is no information about embedding process. But usage of approximate cover model makes 

unfeasible elicitation of slight changes of parameters the sophisticated cover models, which are widely 

used in modern embedding algorithm. It leads to deterioration of stegdetectors performance, especially 

in case of usage the adaptive steganographic techniques, such as HUGO algorithm, MiPOD algorithm 

and UNIWARD family of embedding methods. 

For overcome mentioned drawbacks of well-known steganalysis methods, there was proposed to use 

the powerful methods of structural analysis for revelation the slight changes the cover image fine 

structure, caused by message hiding [Progonov and Kushch, 2014a; Progonov and Kushch, 2014b; 

Progonov and Kushch, 2015a; Progonov and Kushch, 2015b]. Based on developed methods of 

structural steganalysis it was proposed the multiclass stegdetector (MCS), which gives opportunity not 

only reveal the stego images, but also determinate the class of steganographic methods used for theirs 

creation. Results of comparative analysis the performance of MCS in case of stegodata hiding in 

transformation domains [Progonov, 2016] confirmed the high efficiency of proposed approach. 

Therefore it is of interest further examination of multiclass stegdetector performance by stego image 

formation according to advance embedding methods. 
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Task and challenges 

Our purpose is investigation the performance of proposed multiclass stegdetector in case of usage the 

modern adaptive methods for data embedding in digital images. 

Advanced methods for data embedding in digital images 

For message hiding in digital images, there was proposed significant number of steganographic 

methods. Such methods can be divided into four groups [Fridrich, 2009; Cox et al, 2008; Böhme, 2010]: 

1. Model preserving methods – are designed to preserve the simplified model of the cover source. 

The examples of such methods are MBS1 and MBS2 algorithms. 

2. Mimicking natural image processing methods – the goal of such methods is to masquerade the 

embedding as some natural process of images, such as noise superposition during image 

acquisition. In this group of steganographic methods can be included the stochastic modulation 

method. 

3. Steganalysis-aware methods – use known steganalysis attacks as guidance for the design the 

embedding process. As examples it should be mentioned (±1) algorithm, F5 algorithm and 

HUGO algorithms. 

4. Minimal-impact (adaptive) methods – are based on minimizing the total cost (impact) of data 

hiding during formation of stego image. The total cost is measured as sum of embedding 

changes at each cover image element during hiding the separate stegobit. The most well-

known adaptive methods are WOW method, UNIWARD family of steganographic algorithms, 

Synch algorithm. 

The stego scheme, based on model-preserving principle, will be undetectable as long as the chosen 

model completely describes the cover images. Due to lack of accurate models for real images, there are 

used simplified model of image, for instance based on preserving its first-order statistics or histogram 

[Fridrich, 2009]. Applying by stego analytic more precise model of cover image source, for example, 

including the high-order statistics, allows reliably detecting the stego images, formed according to such 

schemes.  

By usage the stego methods from the second group, even if the effect of embedding were in-

distinguishable from some natural processing, the obtained stego images should stay compatible with 

the distribution of cover images. Distinction between the cover image dataset used by steganographer 

and steganalytics can be used by the latter for reliably detection the formed stego images. 

The most secure stego schemes for message hiding today are related to groups of steganalysis-aware 

and minimal-impact methods. Such methods are typically realized in two steps: firstly, compute the cost 

of changing each cover image’s pixel with usage of predefined distortion function. Secondly, secret 
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message is embedding while minimizing the sum of cost of all changed pixels. Such approach gives 

opportunity to create high robust embedding methods, which are most challenging to steganalysis. Well-

known examples of such methods are WOW [Holub and Fridrich, 2012], UNIWARD method’s family 

[Holub et al, 2014], HILL [Li et al, 2014] and MiPOD [Sedighi et al, 2016] embedding algorithms. Let us 

consider such algorithm in more details. 

Peculiarity of first adaptive embedding methods was usage of heuristic-defined function   x  for 

estimation the cover image x  distortion due to message hiding. Applying of simplified image model, 

which does not capture the interpixels dependences, allows represent   x  as superposition of local 

disturbances ij  of cover image’s characteristics due to stegodata embedding. One of the well-known 

examples of such distortion function was proposed in the WOW embedding algorithm [Holub and 

Fridrich, 2012]: 
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where    l l  R x K lth residuals, obtained by convolution of cover image x  and lth direction filter 
 lK ;  

 
 

 l l
ij ij  R x K  lth residuals, calculated for cover image after hiding separate stegobit by 

altering the pixel brightness at position  ijx ;       1 2, , , L
L  K K K bank of directional filters; 

,M N  size of cover image x . For additional decreasing the number of disturbed pixels stegodata is 

preprocessed with usage of syndrome-trellis codes. WOW algorithm forces the distortion to be high 

where the content is predictable in at least one direction (smooth areas and clean edges) and low where 

the content is unpredictable in every direction (as in textures). 

Modification of WOW’s distortion function was proposed in HILL algorithm [Li et al, 2014]: 
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where H high-pass filter (Ker–Böhme kernel); 1 2, L L correspondingly, low-pass (averaging) filter of 

support 3 3 and 15 15 pixels. Low-pass filtering of the costs ρ  allows improving empirical security 
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due to increasing the entropy of embedding changes in highly textured regions and, therefore, reducing 

the distortion for the same payload.  

Further development of WOW’s distortion function is universal wavelet relative distortion (UNIWARD) 

[Holub et al, 2014]: 
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where , x y correspondingly cover and stego images;    k
uvW x  uvth wavelet coefficient in the kth 

subband of the first level the two-dimensional discrete wavelet transformation the cover image; 

 0    constant stabilizing the numerical calculations. Usage of proposed distortion function 

allows create the state-of-art uniform approach to cover image parameters disturbances regardless of 

the message embedding domain [Holub et al, 2014]. 

It should be noted, that considered embedding algorithms allow minimize the distortion of cover image 

parameters by message hiding, but do not taking into account the statistical detectability of obtained 

stego images. Design of distortion functions that measure cover image distortions as well as statistical 

detectability of formed stego images is one of open problems in digital image steganography today [Ker 

et al, 2013]. For solve this problem there were proposed various approaches, based on usage only 

pixels, which have the smallest impact on the empirical statistical distribution of pixels groups [Pevný, 

2010] or usage the distortion functions, which are optimized to minimize the empirical detectability in 

terms of the margin between cover and stego images represented using low-dimensional features [Filler 

and Fridrich, 2011]. These approaches are limited to empirical “models” that need to be learned from a 

database of images and, therefore, may become highly detectable should the Warden choose a 

different feature representation [Filler and Fridrich, 2011]. For overcome mentioned drawback there was 

proposed to model the cover pixels as a sequence of independent Gaussian random variables with 

unequal variances (multivariate Gaussian or MVG). It gives opportunity to achieve the empirical security 

of the embedding methods, which was subpar with respect to state-of-the-art steganographic methods 

[Holub and Fridrich, 2012; Holub et al, 2014]. Example of steganographic techniques, based on such 

approach, is MiPOD embedding method, which uses the locally-estimated multivariate Gaussian cover 

image model.  

Message hiding in grayscale cover image x  with size M N  (pixels) according to MiPOD method is 

carried out in several steps [Sedighi et al, 2016]: 
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1. Suppress the image content  1 2x , , , ,Lx x x    ,L M N  using a denoising filter F : 

  r x x ,F   

where x  is represented in column-wise order; 

 

2. Measure pixels residual variance 2 l  using Maximum Likelihood Estimation and local 

parametric linear model: 

 r Ga ξ ,l l l  (1) 

where rl represents the value of the residual r  inside the p p  block surrounding the lth residual put 

into a column vector of size 2 1p  ; G a matrix if size 2p p that defines the parametric model of 

remaining expectation; al a vector of 1q  of parameters; ξ l the signal whose variance is need to 

be estimated. 

The pixels residual variance 2 l  is estimated according to further formula: 
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where   1   GP I G G G GT T
l the orthogonal projection of the residual rl , estimated according to 

(1), onto the 2p q  dimensional subspace spanned by the left null space of G ; I l  the l l  unity 

matrix. 

 

3. Determine the probability of lth embedding change  1 2  , , , ,l l L  that minimize the 

deflection coefficient 2  between cover and stego image distributions: 
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where      2 1 2 1 2     log logH z z z z z is ternary entropy function; R cover image payload in 

nats. 
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Minimization of (2) can be achieved by using the method of Lagrange multipliers. The change rate l  

and the Lagrange multiplier   can be determined by numerically solving of further  1l  equations: 
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4. Convert the change rate  l  to cost l : 

 1 2  ln ;l l  (3) 

 

5. Embed the desired payload R using syndrome-trellis codes (STCs) with pixel costs determined 

according to (3). 

 

Applying the locally-estimated multivariate Gaussian cover model in MiPOD algorithm gives opportunity 

to derive a closed-form expression for the performance of the detector but, at the same time, complex 

enough to capture the non-stationary character of natural images [Sedighi et al, 2016]. 

Mentioned additive distortion functions use simple assumption that cost of not making a change is 

always zero. It does not take into account the influence of surrounding pixels on analyzed pixel’s 

brightness value, which leads to underestimate the cover image distortion by message hiding. Therefore 

it was proposed to use the non-additive distortion functions for improving the empirical security of 

embedding schemes [Denemark  and Fridrich, 2015]. 

In the work there was also investigated the case of usage the Synch scheme [Denemark  and Fridrich, 

2015] for improving the MiPOD embedding algorithm. The main steps of stegodata m  embedding in in 

grayscale cover image x  with size M N  (pixels) according to Synch-MiPOD algorithm are: 

 

1. Divide message into  two equal size parts: 

1 2 m m m ;   

2. Compute the cost    1 2 1 2   , , , , , , , ,ij i N j M  from the cover image x  according to 

formula (3); 
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3. Set stego image y is equal to cover image x ; 

 

4. For each stego image pixel compute the cost of its modification in range  1 0 1  ; ; : 

   1 1   y y~, ,ij A ij ijD x  (4) 

   0  y y~, ,ij A ij ijD x  (5) 

   1 1   y y~, ,ij A ij ijD x  (6) 

where  
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 index set of all two-pixels cliques formed by two vertically and horizontally adjacent pixels; 

  2    ij klA  average clique cost;  0    parameter controlling the strength of penalizing 

desynchronized changes; x~ij ijy  shorthand for x  in which only the  ,i j  pixel ijx  was changed to 

ijy ; 

 

5. Embed ith element of message mq  into cover image, by taking into consideration the computed 

costs (4)-(6), with usage of STCs; 

 

6. Repeat steps #4-5 q times ( 2q ); 

 

7. Repeat step #6 k  times  1 2 ( , , , )k K . 
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Embedding with different costs of all three possibilities  1 0 1 ; ;  requires the use of the so-called 

multi-layer STCs [Filler et al, 2011]. It should be mentioned that the costs A  are computed only once 

before the embedding starts and are kept the same throughout the embedding, i.e., they are not 

recomputed after every k  sweep. Finally, the recipient reads the secret message using the same STCs 

applied to each sublattice and concatenating both parts. 

Structural steganalysis of digital images 

The most common approach to revealing the stego image is based on analysis the alteration of cover 

image’s statistical characteristics, such as first-order statistics, second-order statistics and so on 

[Fridrich, 2009; Böhme, 2010]. There was proposed considerable number of powerful statistical 

steganalysis methods, based on applying the rich models if cover image in spatial (SPAM, SRM 

models) as well as JPEG (CC-PEV, CC-JRM models) domains. Despite of high accuracy the stego 

image detection, there is significant limitation of practical usage of mentioned methods, connected with 

great number of model’s parameters, for instance 22,510 parameters for CC-JRM [Fridrich and 

Kodovský, 2012b] model, 34,671 parameters for SRM model [Fridrich and Kodovsky, 2012a]. It leads to 

sizeable increasing the stegdetector tuning and image processing times, which is inappropriate for real-

time detection systems. 

For overcome mentioned drawback of statistical steganalysis methods, there was proposed to use the 

powerful methods of digital image structural analysis, such as variogram analysis [Progonov and 

Kushch, 2014b], multifractal detrended fluctuation analysis [Progonov and Kushch, 2014a; Progonov 

and Kushch, 2015a] and multifractal analysis [Progonov and Kushch, 2015b]. 

Variogram analysis is widely used for investigation the correlation characteristics of time series  I s  

and based on usage the variogram function [Cressie and Wikle, 2011]: 
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where         s I s I scov ,C h h  covariation of values the time series adjacent elements; h  time 

shift (lag). In most applications further approximation of variogram  2 I h  is used [Cressie and Wikle, 

2011]: 
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where hN set of possible pairs of position the elements, when distance between them is equal to h . 

Usage of variogram approximation  2 Iˆ h  allows estimate such correlation characteristics of time 

series [Cressie and Wikle, 2011]: 

1. Nugget-effect – the value of correlation between adjacent elements if time series: 
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2. Sill – the value of maximal variance the time series element’s values: 
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3. Range – the interval of correlation between values of adjacent elements of time series: 
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Value of range IR  usually is determined when correlation between adjacent elements is not less than 

10% [Cressie and Wikle, 2011]. Despite of high accuracy estimation of image correlation parameters by 

usage of variogram analysis, this approach has limited opportunity to investigate the parameters of 

separate image components like intrinsic noise, contours etc. It requires applying the specialized 

processing methods, such as multifractal detrended fluctuation analysis (MF-DFA). 

MF-DFA is generalization of well-known detrended fluctuation analysis and allows not only estimate the 

Hurst coefficient H  values, but also investigate the multifractal nature of intrinsic noise of time series 

[Kantelhardt et al, 2002] – spectrum of generalized Hurst exponents  h q  as well as multifractal 

spectrum  h hf  . Variation of scaling parameter q  gives opportunity to estimate the generalized 

Hurst exponent  h q  for time series element’s value fluctuation with small ( 0q  ) and ( 0q  ) large 

amplitude. On the other hand, discrete values of multifractal spectrum  h hf   correspond to Hausdorff 

dimension of the analyzed signal subset, which exponent of Hölder condition is equal to h . Values of 

h  are varied between min
h h  , which corresponds of signal components with minimal fluctuations 

between adjacent pixels, to max
h h  , which corresponds to most “irregular” components. 

Increasing of stegdetector performance requires improving the used model of cover source. Besides the 

widely used statistical and correlation characteristics of cover images, it is also of interest to include the 
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cover-specific features, such as fractality – preserving the statistical characters on the different scales 

[Peitgen et al, 2014]. Multifractal analysis allows extend the opportunity of “classical” fractal analysis – 

gives opportunity to investigate the fractal properties of image components with usage of spectrum the 

generalized fractal dimensions (Renie spectrum) qD  as well as multifractal spectrum  f  . Spectrum 

qD allows not only estimate the Hausdorff dimensions of image components with various average 

brightness, in particular case minimal and maximal, which are correspond to MIN
qD  and MAX

qD , but also 

information ( 1D ) and correlation ( 2D ) dimensions. The former characterizes the growth rate of the 

Shannon entropy given by successively finer discretizations of the space, while the latter is a measure 

of the dimensionality of the space occupied by a set of random points. 

Variogram analysis, multifractal detrended fluctuation analysis and multifractal analysis of digital images 

was performed according to algorithms, described in [Progonov, 2016]. 

Multiclass stegdetector for digital images 

Joint use of mentioned methods the structural steganalysis allows not only detect the stego images, but 

also carry out the forensic steganalysis – ascertains the domain, where message has been hidden, 

estimates the payload, and determines the processing chain of cover image as well as stegodata 

[Progonov, 2016]. Based on these results there was developed the multiclass stegdetector, which 

structural scheme is shown at Fig. 1. 
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Figure 1. The flowchart of digital image processing by proposed generalized multiclass stegdetector 
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The stegdetector consists of two parts (Fig. 1) – analysis and classifier modules. Former module is 

subdivided into three modules, namely variorgam, multifractal detrended fluctuation and multifractal 

analyses, which are used for determination the statistical, correlation and fractal characteristics of 

inputted image. Obtained features are transferred to classifier module (Fig. 1). At first stage, base 

classifier map processing image to class of covers or stegos, depending on obtained feature values. If 

image is classified as containing the hidden messages (stego image, Fig. 1), additional classifier’s 

submodules are applied for determine the class of steganographic techniques used for stego creation 

(Table 1). 

Table 1. Classifiers for determination the class of used steganographic technique 

Classifier number Cover processing chain Stegodata processing chain 

1 
One-stage, common transformation (Fourier, 

cosine or wavelet discrete transformations) 
– 

2 
One-stage, uncommon transformation (for 

instance Singular Value Decomposition) 
– 

3 
Two-stage, composition of common and 

uncommon transformations 
– 

4 
Three-stage, composition of common and 

uncommon transformations 
– 

5 
One-stage, common transformation (Fourier, 

cosine or wavelet discrete transformations) 
Scrambling transformation 

6 
Two-stage, common transformation (Fourier, 

cosine or wavelet discrete transformations) 
Scrambling transformation 

 

Each classifier (Fig. 1) calculates the probability  1 2 6 , , , ,iP i  that analyzed image has been 

modified according to embedding method, belonging to corresponding class of steganographic 

techniques. Identification of most probable class the steganographic methods, used for creation of 

analyzed image, is carried out in decision support module by comparison of obtained probabilities iP  

and determination of maximum probability MAX
iP . According to decision of MCS there are also shown 
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recommendation for choosing the most effective (targeted) method for destruction the revealed stego 

image. 

Experiments 

For estimation the accuracy of stego image revealing by usage of proposed multiclass stegdetecor there 

were conducted the tuning and testing of MCS on test packet of 2,500 digital images from MIRFlickr-25k 

dataset [Huiskes and Lew, 2008]. Test packet was divided into training (1,250 images) and testing 

(1,250 images) subpacket in a pseudorandom manner. All images were scaled to the same size 

512 512  pixels with usage of Lanczos kernel and saved in lossless JPEG format (Image Quality 

Factor is equal to 100%).  

Payload of cover image was varied from 5% to 25% with step 5% and from 25% to 95% with step 10%. 

Training of MCS was conducted with usage of image characteristics, obtained by applying the 

variogram analysis (39 parameters), multifractal detrended fluctuation analysis (182 parameters) and 

multifractal analysis (14 parameters). Estimation of mentioned features was carried out according to 

developed algorithms, represented in [Progonov, 2016]. Total number of used image features is equal to 

235.  

Testing of tuned MCS was repeated 10 times with reinitialize of training and testing subpackets. The 

averaged probabilities of cover and stego images attribution to steganographic technique’s classes 

(Table 1) are shown in Table 2. For sake of convenience, the largest values of probabilities 

 1 2 6 , , , ,iP i  for each embedding methods are marked in thick print and underlined. 

It should be mentioned that usage of proposed multiclass stegdetector allows correctly determine the 

cover image processing chain in case of usage the WOW and S-UNIWARD embedding methods (Table 

2) – applying of common (two-dimensional discrete wavelet transformation) and specific (minimizing the 

distortion function value) processing methods. On the other hand, minor changes of WOW embedding 

scheme in HILL algorithm leads to misclassify the obtained stego images by MCS as formed according 

to simple embedding methods in frequency domain (class #1, please see Table 2). Obtained 

classification results for mentioned embedding methods remain permanent even in case of high cover 

image payload (more than 50%, Table 2). 

In case of applying the modern adaptive steganographic schemes like MiPOD and Synch-MiPOD, 

multiclass stegdetector misclassify incorrectly classify obtained stego images as formed according to 

multistage embedding methods (Table 2), despite any cover transformations have not been applied. 

Misclassification of stego image in such case can be explained by disparity of used cover image model 

– multivariate Gaussian image model in MiPOD algorithm and union of Markov and fractal models in 

proposed MCS.  
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Table 2. Averaged probabilities of stego images attribution to considered steganographic technique’s 

classes in case of low (10%) and high (85%) payload of cover image 

Cover image 

payload 

Embedding 

method 

Steganographic technique’s class 

#1 #2 #3 #4 #5 #6 

10% 

WOW 0.39 0.17 0.47 0.28 0.09 0.08 

HILL 0.42 0.28 0.33 0.06 0.01 0.12 

S-UNIWARD 0.08 0.07 0.58 0.01 0.38 0.01 

MiPOD 0.02 0.15 0.34 0.41 0.22 0.19 

Synch-MiPOD 0.27 0.01 0.21 0.46 0.31 0.07 

85% 

WOW 0.63 0.41 0.77 0.22 0.11 0.18 

HILL 0.91 0.66 0.74 0.13 0.10 0.23 

S-UNIWARD 0.07 0.02 0.98 0.03 0.14 0.01 

MiPOD 0.01 0.28 0.71 0.68 0.07 0.11 

Synch-MiPOD 0.18 0.02 0.12 0.89 0.22 0.02 

 

Conclusion 

On the basis of conducted comprehensive analysis of performance the proposed multiclass 

stegdetector it is established that: 

– It is confirmed the high efficiency of stegdetector even in case of investigation the stego images, 

formed according to a priory unknown embedding methods. Ability of stegdetector to determine the 

class of steganographic techniques, used for stego image creation, allows choose the targeted 

methods for hidden message destruction with minimal impact on cover image visual quality; 

– Applying of adaptive embedding methods, based on usage the uncommon (multivariate Gaussian) 

cover model for stego image creation, allows significantly decrease the accuracy of it detection by 

usage of multiclass stegdetector. It is explained by usage of steganalytic “simplified” digital image 

model, which capture the most general features (fractality, correlation of brightness the adjacent 
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pixels) and has limited opportunity to represent the complicated local dependences in high-textured 

area of image. Overcome the revealed limitation requires creation the generalized image model for 

accurate capture the various features of real images, such as non-stationarity and heterogeneity. 
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