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Abstract: A hybrid neuro-fuzzy system that combines different concepts like Deep Learning, Group 

Method of Data Handling and Evolving Systems is offered in this work. It’s also proposed to adjust all 

parameters in an online way. As a node of the evolving multilayer system, there’s an idea to utilize 

extended neo-fuzzy neurons which are exemplified by high approximating capabilities. During the 

learning stage, the proposed deep evolving system calculates its parameters and tweaks its 

architecture. The system’s architecture can be evolving over time as synaptic weights, centers and 

widths’ parameters of the neuro-fuzzy nodes are being adjusted for improvement of the system’s 

approximation features. There’s a high probability to process data sets much faster due to parallel 

tuning of parameters for the system. A key feature of the introduced system is that a large training set is 

not in demand for the system to be tuned. 

Keywords: Evolving System; Neuro-Fuzzy System; Multilayer Neural Network; Extended Neo-Fuzzy 
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Introduction 

An increasing number of various up-to-date applications produce non-stationary time series describing a 

behavior of some complex processes. That’s why the generated model for predicting the system’s 

dynamics and optimizing their presentation should be capable of adapting its parameters over time 

[1-6]. 

During the last few years, evolving intelligent systems have become widely spread and popular for 

handling any sort of dynamic modeling and training requirements in real-world (online) applications, 

especially under conditions of a growing effect of the dynamic data context, sequential video analysis, 

and web mining. This demand is justified by the growing dynamic and complexity of current problems as 

well as the ascending volumes of data storages, which lead to the fact that traditional batch training is 

not possible any more to be applied within some reasonable time period and tolerable accuracy. [7-15]. 
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The evolving incremental learning systems should process huge amounts of data, analyze the data 

rapidly and extract data features on the fly. Since the data is transforming permanently, these systems 

must be capable of adapting their topology.  

From the algorithmic point of view, the evolving system should be able to carry out some parametric 

adaptation. Stated in another way, it has to be contributed by a set of parameters along with adaptation 

of the required tweaks to be implemented effectively [16-21]. 

Let’s dwell on the fact that deep neural networks (DNNs) have gained a high impact on data processing 

recently [22-25]. Although this class of networks is quite bulky when speaking of the computational 

implementation. And there’s a high plausibility that the overfitting problem takes a place while dealing 

with a short training data set. 

As an alternative view, it is also reasonable to generate DNN architectures on the grounds of the Group 

Method of Data Handling (GMDH) [26-39]. In this connection, various systems from the area of 

Computational Intelligence usually enhance automatically a number of their structure layers for 

information handling in order to obtain the precision on demand for results. That’s a great deal of sense 

to separate an initial space somehow into a suite of subspaces in lower dimensions and combine the 

results obtained. The Group Method of Data Handling (GMDH) possesses an apparent benefit from a 

computational point of view. But its huge drawback is its rather poor adaptation for an online mode. That 

is a rather smart decision to apply GMDH characteristics to evolving cascade neural networks, although 

some of these systems might freeze their parameter values [40-43]. 

A specifically new subject of interest is a combination of hybrid systems of computational intelligence 

and the GMDH concepts with the general aim of new computational and theoretical results especially for 

Data Mining and Data Stream Mining [44, 45]. The GMDH-ANN topologies have been considered in [40] 

in terms of using specific two-input N-Adalines as structural elements. A main purpose of this topological 

element was to guarantee a quadratic approximation for recovering a non-linear mapping. Meanwhile, 

estimating the achieved quality could lead to a substantial quantity of hidden layers. 

Authors already developed composite R-neurons as topological units for their online hybrid system 

(joining the paradigms of cascade neural networks and GMDH structures) [43] . A high operating speed 

and high approximating abilities are main performance indicators. Although both its parameters and 

framework are being adjusted in an online mode, but it still claims long enough training data sets. 

That’s a very challenging task when there’s an obvious lack of incoming data (a short data set), and the 

system is not capable of tuning its parameters. 

In this regard, it’s highly important to offer a hybrid neuro-fuzzy system to be trained in an online fashion 

and to be able of altering its topology while being trained. That’s also very topical to introduce the 



International Journal “Information Theories and Applications”, Vol. 25, Number 1, © 2018 

 

20 

system that keeps in possession an appreciably lower number of attributes to be adjusted in comparison 

with other well-known compatible systems. 

The Architecture of the Deep GMDH Neuro-Fuzzy System 

A structure of the deep GMDH neuro-fuzzy system is given in Fig. 1. The receptive (zero) layer of the 

system contains a  1n -dimensional vector of input signals         1 2
T

, , ..., nx k x k x k x k  (

1 2 , , ...,k N  denotes in this case either an observation in a training set or an index of the current 

discrete time). This vector is subsequently fed into the first hidden layer that comprises 2
1  nn c  

elements (every element owns only two inputs). 

There is a special type of elements (the selection block) that accounts for choosing the best node in the 

strict sense of precision (in terms of an accepted criterion). For instance, the selection block in the first 

layer 1[ ]SB  selects 1
n  ( 1 *n n ) signals with the highest accuracy among the output signals    1ˆ

my k  (

  21 2 0 5 1  , , ..., , nm n n c ) of the first layer nodes 1[ ]N . 

Afterwards, 2n  pairwise combinations        1 1 ˆ ˆ,l py k y k  are composed (in most cases 2 2 n n n ) 

among the mentioned above 1
n  best outputs. The signals obtained are later propagated to the second 

hidden layer composed by nodes 2[ ]N  in a similar manner to the neurons 1[ ]N . Among the signals of 

this layer  2ˆ
ly  the selection block 2[ ]SB  selects F best neurons by accuracy (e.g. by 2

2 [ ]
ly

) if the best 

signal of the second layer is better than the best one of the first hidden layer  1
1

ˆ *y . 

 

 

 

Figure 1. The structure of the deep GMDH neuro-fuzzy system 
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Other hidden layers forms signals similarly to the second hidden layer. The system evolution process 

continues until the best signal of the selection block  1sSB  would be worse than the best signal of the 

previous s th layer, that is 1

2 [ ]s
ly

> 2 [ ]s
ly

. Then we return to the previous layer and choose its best node 

neuron [ ]sN  in order to form the system output signal [ ]ˆ sy . 

It should be stressed that we obtain not only optimal network structure but well-trained network as well 

due to GMDH algorithm. Besides, since the training is performed sequentially layer by layer the 

problems of high dimensionality as well as decaying or exploding gradient vanish. This is very important 

for deep learning networks. 

The Extended Neo-Fuzzy Neuron 

A model of the extended NFN was put forward in [46] as a further development and evolution of an 

ordinary neo-fuzzy neuron submitted by Yamakawa, Miki, and Uchino [47-49]. 

A traditional version of the neo-fuzzy neuron is a MISO (multiple inputs and a single output) non-linear 

system that accounts for the permutation 

 

 
1

ˆ
n

i i
i

y f x  (1) 

 

where ix  signifies an i th component in the input vector  1 T
,..., ,..., n

i nx x x x R  (of the 

dimensionality n ), ŷ  marks a scalar output of the neo-fuzzy neuron. In its usual form, NFN embodies 

multiple (non-linear) synapses iNS . Their purpose is to modify the i th vector element in ix  into 

 

   
1





h

i i li li i
l

f x w x  (2) 

 

where h  is the number of membership functions, liw  defines a synaptic weight l  in the i th non-linear 

synapse, 1 2 , ,...,l h , 1 2 , ,...,i n ;  li ix  describes the l th membership function in the non-linear 

synapse i  that performs fuzzification of a crisp element ix . By such manner, the permutation ensured 

by the NFN could be noted down like 
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 
1 1


 

ˆ
n h

li li i
i l

y w x . (3) 

 

The NFN provides the fuzzy inference rule implementation in the form 

 

1 2, ,    ,...,   i li liIF IS THEN THE OUTPUT ISx X w l h  (4) 

 

which consequently infers that the synapse truthfully endows the 0th order fuzzy inference by Takagi–

Sugeno. 

As mentioned previously, the NFN’s synapse iNS  covers the 0th order inference by Takagi–Sugeno 

only producing the simplest Wang–Mendel neuro-fuzzy system [50–52]. It seems quite valid to expand 

approximating capabilities of this computational node by introducing a specified topological element to 

have been called an “extended nonlinear synapse” ( iENS ) and to develop the “extended neo-fuzzy 

neuron” (ENFN) that embraces iENS  units instead of conventional synapses. 

After introducing additional parameter values in extended nonlinear synapse 

 

     0 1 2 2     ... ,p p
li i li i li li i li i li ix x w w x w x w x  (5) 

 

     
     
     

0 1 2 2

1

0 1
1 1 1 1 1 1

0
2 2 2 2



  

  



     

    

    

 ...

...

... ... ,

h
p p

i i li i li li i li i li i
l

p p
i i i i i i i i i i i

p p p p
i i i i i i i hi i hi i

f x x w w x w x w x

w x w x x w x x

w x w x x w x x

 (6) 

 

 0 1 0
1 1 1 2 2

T
, ,..., , ,..., ,..., ,p p p

i i i i i i hiw w w w w w w  (7) 
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             1 1 1 2 2      
T

, ,..., , ,..., ,..., ,p p p
i i i i i i i i i i i i i i i i hi ix x x x x x x x x x x  (8) 

 

it can be marked down like 

 

     ,T
i i i i if x w x  (9) 

 

     
1 1

 
 

     T Tˆ
n n

i i i i
i i

y f x w x w x  (10) 

 

where         1 1      
T

,..., ,...,T T T
i i n nx x x x ,  1

T
T ,..., ,...,T T T

i nw w w w . 

It can be noted easily that the ENFN holds  1p hn  parameters (synaptic weights) to be adjusted and 

the fuzzy inference realized by each iENS  is 

 

0 1 1 2   ... , , ,...,p p
i li li li i li iIF x IS X THEN THE OUTPUT IS w w x w x l h  (11) 

 

which ties up to the Takagi-Sugeno inference of the p th order. 

The ENFN’s framework is not so complicated in comparison with the conventional neuro-fuzzy system. 

The architecture of the extended neo-fuzzy neuron and the extended neo-fuzzy synapse are given in 

Fig. 2 and Fig. 3. 

The usage of the scatter partitioning of the input space [21] can cause the appearing of “gaps” in the 

fuzzified space. To avoid this problem one can use the bell-shaped constructіons with non-strіctly local 

receptіve support as membership functions. Mostly the Gaussians are used as membership functions of 

the first layer 
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       
 

2

22




   
 
 

exp i li

li i
li

x k c k
x k

k
 (12) 

 

where  lic k  is the parameter that defines the center of the membership function,   li k  is the width 

parameter of this function. 

 

 

Figure 2. Extended neo-fuzzy neuron 

 

 

Figure 3. Extended neo-fuzzy synapse 
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The Adjustment Procedures for All System Parameters 

With regard to the fact that the reference signal  1[ ]ˆ
sy k  in every system node is in linear dependence 

on the configurable synaptic weights liw , one can make use of both either the established least squares 

method or its recurrent version  to tune them. If the data to be trained is not stationary, it is feasible 

enough to apply the exponentially weighted recurrent least squares algorithm to adjust the weights as 

represented by 

 

   
             

        

   
          

        

1 1
1

1

1 11
1

1

 

  

 
   

      
 


            

  
 

 

 

 

T

T

T

T

,
P k y k w k x k x k

w k w k
x k P k x k

P k x k x k P k
P k P k

x k P k x k

 (13) 

 

(where 0 1   denotes a forgetting feature, and  y k  implies the reference signal) or the 

exponentially weighted gradient learning procedure 

 

   
          

 
       2

1
1

1 0 1

 


   

  
   



    

  
 



T

,

, .

y k w k x k x k
w k w k

k

k k x k

 (14) 

 

The process of tuning both parameters of the centers and the synaptic weights may be implemented by 

means of the gradient procedures for minimization of the learning criterion 

 

               221 1

2 2
     T

ˆE k y k y k y k w k x k  (15) 

 

in the form of 
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     

     2 2
2

1

1 



  


 
   


    

 


,ri ri c
ri

ri ri
ri

E k
с k c k

c

E k
k k

 (16) 

 

where 1 2 , , ...,r h ; c ,   signify learning rates for the centers’ and the widths’ parameters 

correspondingly,    2 20 5    ,ri rik k . Based on the previous expressions, the following expressions 

are obtained 

 

             

             
2 2




 

 
 

 


    

 

 
 

T

T

,

.

i i

ri ri

i i

ri ri

f x kE k
w k x k y k

c c

f x kE k
w k x k y k

 (17) 

 

Following on from (17), the derivatives 
  


i i

ri

f x k

c
 and 

  
2


 

i i

ri

f x k
 could be presented in terms of 
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0
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
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  

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

  

,

,

p
i i ri i ri it t

ri i
tri ri ri

p
i i ri i ri it t

ri i
tri ri ri

f x k x k x k
w x

c c c

f x k x k x k
w x

 (18) 

 

Defined on the ground of (12), the derivatives 
  


ri i

ri

x k

c
 and 

  
2





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ri i

ri

x k
 can be represented as 
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x k x k c k
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 (19) 

 

In this fashion, all the system nodes’ parameters (synaptic weights, centers and width parameters for 

the membership functions) may be adjusted. Concerning the successive layers, the nodes’ parameters 

are usually tuned quite the same way as the nodes in the first hidden layer. It should be noted that 

inputs of the s th layer are a pairwise combination of the signals    1 1   ˆ ˆ,s s
l py y  formed by the selection 

block 1[ ]sSB . The reference signal  y k  is the same one for all the blocks (layers) of the evolving 

complex system. 

The Experimental Investigations 

The Darwin sea level pressure data set was chosen from the Data Market data storage to investigate 

the efficiency of the offered deep GMDH-system and its learning schemes. It was mainly used for non-

stationary signals’ prediction. The data set presents chiefly a monthly sea level pressure for a period of 

more than a century (1882-1998). The general size of this data sample is 1400 observations. The 

system used 1100 observations for training and 300 observations for testing. To estimate the efficiency 

of the proposed neuro-fuzzy system a multilayer perceptron and ANFIS were also considered for solving 

the same task. The results obtained were estimated according to the MSE quality criterion. 

Table 1 gives a demonstration of the systems’ performance. The proposed deep GMDH-system 

illustrated quite good results while handling the prediction task. It is worth mentioning that its training 

time was short enough compared to analogues. At the same time, its forecasting results were the best 

ones for this data set. Fig. 4 demonstrates a fragment of the learning process. 

Table 1. Experimental results 

System Training error Test error Training time, sec 

The proposed deep GMDH 

system  
0.0146 0.0156 0.2067 

MLP 0.0150 0.0168 0.2500 

ANFIS 0.0157 0.0165 0.2031 
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Figure 4. Prediction results 

 

 

Conclusion 

The deep evolving neuro-fuzzy system is suggested in this paper. The hybrid system is grounded on 

both the Group Method of Data Handling and the concept of evolving systems that makes it possible to 

define both optimal parameter values and the best structure in every specific case. 

The important property of the suggested system is that it doesn’t require any high data volumes to get 

trained. Adjusting parameters in a parallel fashion gives an option of increasing a processing speed of 

data handling. 
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