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RECONSTRUCTION OF BINARY IMAGES FROM THEIR HORIZONTAL AND 

DIAGONAL PROJECTIONS1 
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Abstract: In this paper we consider the problem of reconstruction of binary images from their horizontal 

and diagonal projections. A large number of publications is devoted to analysis of straight horizontal 

and/or vertical projections. But reconstruction by the use of incorporated diagonal projections is of a 

principal difference. 
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Introduction 

Discrete Tomography aims at recovering of discrete sets from their projections composed along the 

given set of directions. Discrete sets or lattice sets are finite subsets of vertices of the integer lattice ܼௗ. 

The lattice directions are those, represented by any nonzero vectors of ܼௗ. A line ݈ in ݀-dimensional 

Euclidean space is a lattice line if it is parallel to a lattice direction and passes through at least one point 

in ܼௗ. A projection of a lattice set in a lattice direction ݑ is a function giving the number of its points on 

each line parallel to the direction ݑ ([HermanKuba, 1999]). 

 

Given a set of lattice directions {ݑଵ, ⋯,ଶݑ , ,ଵܨ :} and projections along those directionsݑ ⋯,ଶܨ , ܨ , 
we consider Consistency, uniqueness and reconstruction problems in Discrete Tomography. 

Consistency: Does there exist a discrete set ܶ ∈ ܼௗ  with given projections ܨଵ, ⋯,ଶܨ , ܨ  in lattice 
directions {ݑଵ, ⋯,ଶݑ ,  ?{ݑ

Uniqueness: Is a discrete set  ܶ ∈ ܼௗ  uniquely determined by the given projections ܨଵ, ⋯,ଶܨ ,  ?ܨ

Reconstruction: Construct a discrete set ܶ	 ∈ ܼௗ from its projections ܨଵ, ⋯,ଶܨ , ܨ . 
                                                      

 

1 Partially supported by grants № 18RF-144, and № 18T-1B407 of the Science Committee of the Ministry of Education and Science of 

Armenia  
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If we are given dimension count ݀ ≥ 2, and ݈	 ≥ 3 non-parallel projections in the integer lattice ܼௗ, 

then the consistency, reconstruction and uniqueness problems are NP-hard ([GardGrizmPran, 1999]).  

Discrete sets of vertices in ܼଶ  can be considered also as binary images or binary matrices. In the 

simplest case of horizontal and vertical projections the existence and construction problems of discrete 

sets by their projections is considered and solved in 1957 in terms of binary matrices ([Ryser 1957], 

[Gale, 1957]). But in this case, the number of solutions can be exponentially large ([Lungo, 1994). 

A commonly used idea to reduce the set of possible solutions is the use of an a priori 

information/property of the set to be recovered, if such property exists. Two commonly used in this 

context geometrical properties are convexity and connectivity. The existence problem of a binary matrix 

is NP-complete for horizontal or vertical convex, as well as for horizontal or vertical convex and 

connected matrices ([BarcDLungoNivatPinz, 1996]). NP-completeness of the case of 4-connected 

matrices, as well as of horizontal and vertical convex matrices is proved in [Woeginger, 2001]. The case 

of horizontal and vertical convex and connected matrices is solvable in polynomial time ([DurrChobrak, 

1999]; [Kuba 1999]).  

Another idea to reduce the size of set of possible solutions is to take further projections along different 

lattice directions. Reconstruction problem for the case of horizontal, vertical and diagonal projections is 

considered and NP-completeness is proved in [GardGrizmPran, 1999]). For some cases (horizontal, 

vertical, diagonal connected and convex matrices) the problem is solvable in polynomial time 

([BarcBrunDeLunNivat, 2001]).  

The uniqueness and reconstruction problems for the case of diagonal and anti-diagonal projections are 

considered in ([SrivansVerma, 2013]). 

In this paper, we consider discrete sets in ܼଶ and study the reconstruction problem with respect to two 

directions: one horizontal and one diagonal. In Section 2 we derive necessary conditions for existence 

of a binary matrix with the given horizontal and diagonal projections. Section 3 introduces a heuristic 

algorithm of reconstruction of binary matrices from given horizontal and diagonal projections. 

Experimental results are given in Section 4. 

2. Necessary conditions for existence of a binary matrix with given row and diagonal sums 

Consider a binary matrix ܣ = {ܽ,}  with ݊  rows and ݊  columns. Let  ܴ = ⋯,ଵݎ) , (ݎ  and ܦ = (݀ଵ,⋯ , ݀ଶିଵ) denote the row sum and the diagonal sum vectors of ܣ respectively, where: 

ݎ  = ∑ ܽ,ୀଵ ,			݅ = 1,⋯ , ݊, and ݀ = ∑ ܽ,ାୀାଵ , ݇ = 1,⋯ , 2݊ − 1. An example is given in 

Figure 1.  
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Figure 1. 8x8 size binary image, where ܴ = (2,2,4,4,6,5,6,3)	 and ܦ = (0,0,0,0,5,6,3,2,6,5,2,2,1,0,0) are horizontal and diagonal projections (row and diagonal sums 

of the corresponding binary matrix). 

 

Notice that the row and diagonal sum vectors of the matrix must satisfy the following conditions:  ∑ ݀ଶିଵୀଵ = ∑ ୀଵݎ  , 0 < ݎ ≤ ݊,			1 ≤ ݅ ≤ ݊ , 0 ≤ ݀ ≤ ݉ , 1 ≤ ݇ ≤ 2݊ − 1, 

(1)

where ݉ = ൜ ݇,					݂݅		1 ≤ ݇ ≤ ݊݊ − (݇ − ݊), ݂݅		݊ + 1 ≤ ݇ ≤ 2݊ − 1 . 

 

Let ܴ = ,ଵݎ) ⋯,ଶݎ , ܦ ) andݎ = (݀ଵ,⋯ , ݀ଶିଵ) be non-negative integer vectors. Henceforth we will 

assume that ܴ and ܦ satisfy the conditions (1) (in this case they are called compatible vectors) and the 

components of ܴ are arranged in decreasing order: ݎଵ ≥ ଶݎ ≥ ⋯ ≥  _ will denote the followingܦ .ݎ

part of the vector ܦ = (݀ଵ,⋯ , ݀ଶିଵ): ܦ_ = ൫݀,⋯ , ݀൯, where 1 ≤ ݅ < ݆ ≤ 2݊ − 1.  

We define the maximal matrix and two its fragments, and introduce so called “majorization” conditions 

for the fragments and for the whole matrix, which, as one can easily check, are necessary conditions for 

existing of binary matrix with given horizontal and diagonal projections.  
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Maximal matrix 

Let us compose the binary matrix ̅ܣ = { തܽ,} of size ݊ × ݊ whose rows have the following structure: 

1,1,⋯ ,1ᇩᇭᇪᇭᇫ 0,0,⋯ ,0ᇩᇭᇪᇭᇫି
, for 1 ≤ ݅ ≤ ܴ is called maximal matrix and is unique for given ܣ̅ .݊ = ,ଵݎ) ⋯,ଶݎ ,   .) ([Ryser, 1957])ݎ

Let ܦഥ = ൛݀̅ଵ,⋯ , ݀̅ଶିଵൟ denote the diagonal sum vector of ̅ܣ. 

 .Fragment 1 - 1ܨ 

For every ݅, 1 ≤ ݅ ≤ ݊ let 1ܨ denote the left part of ̅ܣ bounded by the ݅-th diagonal line as shown in 

Figure 2. 1ܨ has ݅ rows and ݅ columns. ܵிଵ = ,ଵிଵݏ) ⋯,ଶிଵݏ ,  ிଵ) denotes the column sum vectorݏ

of  1ܨ, where ݏிଵ = ∑ തܽ,ି(ିଵ)ୀଵ , 1 ≤ ݆ ≤ ݅. 
 

 

Figure 2. An example of Fragment  1ܨ	. 
 

 M1 - Majorization condition for the fragment 1ܨ. 

For a given ݅, 1 ≤ ݅ ≤ ݊ we say that the column sum ܵிଵ  of the fragment 1ܨ	of the maximal matrix ̅ܣ majorizes ܦଵ_  (and use the following notation: ܵிଵ ≽ଵ ଵ_) if  for each 1ܦ ≤ ݆ ≤ ݅ the following 

conditions hold: 
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݀ ≤   ,ଵிଵݏ
݀ + ݀ିଵ ≤ ଵிଵݏ + ଶிଵݏ ,  …  

݀ + ݀ିଵ + ⋯+ ݀ଵ ≤ ଵிଵݏ + ଶிଵݏ + ⋯+ ிଵݏ .  
 .Fragment 2 - 2ܨ 

For every ݅, ݊ ≤ ݅ ≤ 2݊ − 1 let 2ܨ denote the left part of ̅ܣ, bounded by the ݅-th anti-diagonal line as 

shown in the Figure 3, where components of anti-diagonal sum vector are defined as:                     

 ݀ = ቊ	∑ ܽ,ିୀି ,			݂݅		1 ≤ ݇ ≤ ݊																			∑ ܽ,ିୀି , ݂݅		݊ + 1 ≤ ݇ ≤ 2݊ − 1 . 
  

 

 

Figure 3. An example of Fragment  2ܨ	 
2ܨ   has (2݊ − ݅ ) rows and (2݊ − ݅ ) columns. ܵிଶ = ,ଵிଶݏ) ⋯,ଶிଶݏ , ଶିிଶݏ ) denotes the column 

sum vector of  2ܨ	where ݏிଶ = ∑ തܽ,ୀି	ା	 , 1 ≤ ݆ ≤ 2݊ − ݅. 
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M2 - Majorization condition for the fragment 2ܨ. 

For a given ݅, ݊ ≤ ݅ ≤ 2݊ − 1 we say that ܵிଶ  majorizes ܦ_ଶିଵ (and use the following notation: ܵிଶ ≽ଶ ݅ _ଶିଵ)  if  for eachܦ ≤ ݆ ≤ 2݊ − 1 the following conditions hold: 

݀ ≤    ,ଵிଶݏ

݀ + ݀ାଵ ≤ ଵிଶݏ + ଶிଶݏ ,  …  

݀ + ݀ାଵ + ⋯+ ݀ଶିଵ ≤ ଵிଶݏ + ଶிଶݏ + ⋯+ ଶିிଶݏ .  

 M3 - Majorization condition for the matrix ̅ܣ 

We say that the diagonal sum ܦഥ of the maximal matrix ̅ܣ majorizes the diagonal sum ܦ (and use the 

following notation:  ܦഥ ≽ଷ if the following conditions hold: ݀̅ଵ (ܦ ≥ ݀ଵ  ݀̅ଵ+݀̅ଶ ≥ ݀ଵ + ݀ଶ  …  ݀̅ଵ+݀̅ଶ + ⋯+ ݀̅ଶିଶ ≥ ݀ଵ + ݀ଶ + ⋯+ ݀ଶିଶ  ݀̅ଵ+݀̅ଶ + ⋯+ ݀̅ଶିଵ = ݀ଵ + ݀ଶ + ⋯+ ݀ଶିଵ  

 

It is easy to check that if there exists a binary matrix of size ݊ × ݊ with given row sum vector ܴ ⋯,ଵݎ)= , ܦ ) and diagonal sum vectorݎ = (݀ଵ,⋯ , ݀ଶିଵ), then the conditions 	3ܯ,2ܯ,1ܯ hold:  ܵிଵ ≽ଵ ݅ ଵ_   forܦ = 1,⋯ , ݊, ܵிଶ ≽ଶ ݅ _ଶିଵ  forܦ = ݊,⋯ ,2݊ − ഥܦ ,1 ≽ଷ   .ܦ

 

3. Algorithm of reconstructing a binary matrix with given row and diagonal sums 

In this section an Algorithm ܦܪ is introduced which constructs a binary matrix ܣ with given row sum  ܴ = ⋯,ଵݎ) , ܦ ) and diagonal sumݎ = (݀ଵ, … , ݀ଶିଵ) from the maximal matrix ̅ܣ.  
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Construction of ܣ proceeds diagonal by diagonal, starting from the right-bottom corner of the matrix, i.e. 

from the (2݊ − 1)-th diagonal line. In each step ݇ algorithm ܦܪ constructs the (2݊ − ݇)-th diagonal 

line in ܣ by moving necessary number of 1s from the diagonal lines of the maximal matrix to the (2݊ − ݇)-th diagonal line.  

Let ݇ − 1 steps be done and (2݊ − 1)-th, (2݊ − 2)-th, etc. (2݊ − ݇ + 1)-th diagonal lines are 

constructed. ܣሚ denotes updated after each step maximal matrix. For constructing current (2݊ − ݇)-th 

diagonal line, algorithm ܦܪ finds the nearest non-zero diagonal line in ܣሚ  (let it be the ݆-th diagonal with ሚ݀  1s) which intersects by rows with the diagonal line under construction, and moves 1s from one 

diagonal line to the other (keeping 1s on the same row). The algorithm checks that conditions 3ܯ,2ܯ,1ܯ are not violated while moving 1s, otherwise it skips the ݆-th diagonal line and continue 

with the next nearest non-zero diagonal ݆ᇱ < ݆, and so on.  

Notice that the condition 3ܯ  provides that there will not be extra 1s on the diagonal line under 

construction before each step; and 1ܯ and 2ܯ provide sufficient number of 1s to be moved to the 

diagonal line under construction. 

 

Algorithm HD: 

Input:	ܴ = ,ଵݎ) ⋯,ଶݎ , ܦ ) andݎ = (݀ଵ,⋯ , ݀ଶିଵ) compatible pair of vectors. 

1. Construct maximal matrix ̅ܣ; calculate ܦഥ = ൛݀̅ଵ,⋯ , ݀̅ଶିଵൟ; ܣሚ:= =:෩ܦ ;ܣ̅  ;ഥܦ

2. if any of conditions 3ܯ,2ܯ,1ܯ are violated then return (Algorithm failure);  

3. for (݇ = 2݊ − 1; ݇ > 0; ݇ − −	) 
{݆: = ݇;  
while ( ሚ݀ ≠ ݀)   

{  

if (Selection of diagonal line ݆′ in ܣሚ is possible)  

then current_diagonal:=1 

else return (Algorithm failure); 

while (current_diagonal = 1) 

{ 

if (Selection of 1 on diagonal line ݆′ is possible) 

then 
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{ 

if (3ܯ is violated after replacing selected 1 with 0) return (Algorithm failure); 

if (݇ > ݊) 

    if (݆′ > ݊)   

if (2ܯ holds after replacing selected 1 with 0) 

then { move the selected 1; update ܦ෩;} 

else {current_diagonal:=0;	݆: = ݆ − 1;} 
    else 

     if (1ܯ&2ܯ hold after replacing selected 1 with 0) 

then { move the selected 1; update ܦ෩;} 

else {current_diagonal:=0;	݆: = ݆ − 1;} 
else 

if (1ܯ holds after replacing selected 1 with 0) 

then { move the selected 1; update ܦ෩;} 

else {current_diagonal:=0;	݆: = ݆ − 1;} 
} 

else {current_diagonal:=0;	݆: = ݆ − 1;} 
} 

}   

}  

Output: matrix ܣሚ. 
 

Selection of diagonal line ݆′ in ܣሚ is possible: if it can be found diagonal line ݆′, 1 ≤ ݆ᇱ < ݆ in ܣሚ   
(nearest possible to the current ݆-th diagonal line is chosen) which has 1s in those rows intersecting 

with	the ݇-th diagonal line. 

Selection of 1 on diagonal line ݆′ is possible: if it can be found 1 on the diagonal line ݆′ (smallest 

index of row is chosen), which is possible to move to the ݇-th diagonal line. 
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Note. 3ܯ,2ܯ,1ܯ conditions have been checking in each step for relevant parts of fragments. 

Consider performance of the algorithm on an example: let ݊ = 6 , ܴ = (5,5,4,3,2,2)  and ܦ =	(0,2,2,3,3,5,4,1,0,1,0).  
First the maximal matrix ̅ܣ is constructed: 

ܣ̅ =
1 1 1 1 1 01 1 1 1 1 01 1 1 1 0 01 1 1 0 0 01 1 0 0 0 01 1 0 0 0 0

 

ഥܦ = (1,2,3,4,5,5,1,0,0,0,0) is the diagonal sum of ̅ܣ.  ݀ଵଵ = 0, and hence there is nothing to reconstruct on the 11-th diagonal line. For constructing the next 

10-th diagonal with ݀ଵ = 1  the nearest non-zero diagonal line is the 7-th diagonal line with ሚ݀ = 1 

and the algorithm will move the corresponding 1. Below is matrix after that step. 1 1 1 1 1 01 1 1 1 1 01 1 1 1 0 01 1 1 0 0 01 1 0 0 0 01 0 0 0 1 0
 

The next non-zero diagonal line to be constructed is the 8-th with ଼݀ = 1; and first non-zero diagonal 

line from which 1-s will be moved is the 6-th with ሚ݀ = 5. Next diagonal line for reconstruction will be 

the 7-th with ݀ = 4 , and first non-zero diagonal in ܣሚ  after previous step is  ሚ݀ = 4. Below are 

matrices after those steps. 1 1 1 1 1 01 1 1 1 1 01 1 1 0 0 11 1 1 0 0 01 1 0 0 0 01 0 0 0 1 0
                

1 1 1 1 1 01 1 1 1 0 11 1 1 0 0 11 1 0 1 0 01 0 1 0 0 00 1 0 0 1 0
 

We will skip detailed descriptions of all steps and below is the final reconstructed matrix by Algorithm 

HD.  

ሚܣ =
0 1 1 1 1 11 0 1 1 1 11 0 1 1 0 11 0 1 1 0 00 1 1 0 0 00 1 0 0 1 0
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4. Experimental results 

In this section experimental results for the provided algorithm are presented.  

Software system is created which implements Algorithm ܦܪ, and different experiments to check its 

performance are conducted for the following cases:  

1. Input is a pair of random vectors; 

In this case random vectors are generated, and then compatibility of the vectors, as well as necessary 

conditions are checked. For keeping randomness there is an option to insert matrix size and rate of 

each component of row and diagonal sum vectors comparative to its maximal value. 

2. Input is row and diagonal sum vectors of random binary matrices.  

For this purpose random matrices are generated and then row and diagonal sums are calculated. To 

keep randomness in generating process an option is created to insert matrix size and probability of each 

matrix cell (to be 1). 

3. Input is row and diagonal sum vectors inserted manually. 

The purpose here is to check the algorithm performance for specially created test cases of row and 

diagonal sums. 

 

Algorithm performance is checked for up to 50x50  size matrixes, filled by different probabilities 

between 0.1 and 0.9.  

 

Experiments for the case 2.  

The algorithm is run for more than 1000 samples /random matrices/.  

Below in Figure 5 is visualization of an example: 

            

(a)      (b)    (c) 

Figure 5. Stages of algorithm performance 
(a)  generated random matrix, (b)  created maximal matrix, (c) reconstructed matrix 
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Algorithm has failed only for two samples: it couldn’t reconstruct existing matrix from its given 

projections. Below is an example:  

 ܴ = ܦ  (17,14,14,14,14,13,13,13,13,12,12,11,11,11,11,10,10,10,10,10) = (1,2,2,3,2,4,4,5,2,7,5,9,9,14,7,15,12,15,11,13,11,9,9,9,8,6,7,6,5,6,7,4,2,3,2,2,2,2,1) 
 

Experiments for the case 1.  

Only 30% of generated vectors passed all conditions (3ܯ,2ܯ,1ܯ). For most of them algorithm failed 

because one of the conditions get violated during some step. For small samples it was possible to check 

manually and make sure that there is no matrix with given row and diagonal sums. 

Conclusion 

An algorithm of reconstruction of binary images from their horizontal and diagonal projections is 

introduced; experimental results are given to measure the algorithm performances. 
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