
International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

157

RENDERING OPTIMIZATION APPROACH FOR GAME ENGINE

DEVELOPMENT

Olena Chebanyuk, Mykhailo Mushynskyi

Abstract: The article is devoted to the problem of creating a software tool for

optimizing rendering in game engines, which will help users to quickly and

easily configure their projects. The tool provides a centralized simple interface

to the rendering tools built into a game engine. The key possibility of the tool is

the management of visual effects, such as Bloom, Volumetric Shadow, Ambient

Occlusion, etc. There is also an opportunity to use profilers and get a critical

information for project optimization.

Keywords: Rendering Optimization, Game Engine, Unreal Engine, GPU, Level

of Detail, Ambient Occlusion, Depth of Field, Bloom, GPU Profiler, FPS, Quad

Overdraw, Dynamic Light, Volumetric Shadow, Static Light, Post-Processing,

Static Mesh.

ITHEA Keywords: B.8.2 Performance Analysis and Design Aids, D.2.3 Coding Tools and

Techniques, D.4.8 Performance.

DOI: https://doi.org/10.54521/ijita28-02-p04

Introduction

Every modern game engine contains numerous tools for customizing graphic

effects and determining their impact on the performance of the gaming

application. They are usually difficult to use and require a large amount of time

to master. Sometimes, developers neglect such tools because of the long

process of identifying and solving optimization problems.

Gaming forums often have complaints from gamers about poor game

optimization. Sometimes, this can be due to the inexperience of developers,

http://idr.ithea.org/tiki-browse_categories.php?parentId=67&deep=off&type=
http://idr.ithea.org/tiki-browse_categories.php?parentId=115&deep=off&type=
http://idr.ithea.org/tiki-browse_categories.php?parentId=115&deep=off&type=
http://idr.ithea.org/tiki-browse_categories.php?parentId=143&deep=off&type=
https://doi.org/10.54521/ijita28-02-p04

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

158

especially in the case of young indie studios, although it also happens in AAA

projects of large gaming corporations. This may also be due to a lack of funding

or insufficient time to complete the product that is usually fixed later with

patches and hotfixes.

Terminology of the proposed approach

The post-processing effects have the greatest impact on the rendering process.

These include volumetric fog, dynamic lighting, texture filtering, shadow, particle

systems, and bloom. Disabling any of the above will increase the processing

speed of a game project by 2-10%. However, it is not necessary to turn them off

as it is possible to adjust their complexity.

Figure 1. Unreal Engine quad overdraw detection tool.

Dark blue for low density, white – for extremely high

Objects complexity also has a strong effect on the processing time of a virtual

scene. The term quad overdraw means a high concentration of overlapping

pixels over each other. In other words, quad overdraw [Intel, 2017] occurs when

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

159

a large number of polygons are called to compute the same pixel. A popular

way to solve this problem is to reduce the detail of static meshes by editing the

object itself in a 3D editor. This can be solved by simply reducing the number of

polygons or by using normal maps. Within the game engine, there is also an

algorithm for optimizing 3D models, called the level of detail or simply LOD. The

principle of this mechanism is to create several variants of the same mesh with

different detail, and use them relatively to the distance from camera.

Figure 2. LOD example: 1148 polygons on the left and

147 on the right

Another important factor is the number of draw calls. Sometimes, a large

number of small elements, such as decorations or plants, can decrease the

performance of a game application. One possible solution is to this problem is

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

160

to combine these objects into one, which will allow you to render an entire group

of objects with a single call to the graphical API. However, this technique can

have negative consequences. The fact is that the merging of objects involves

the merging of their materials as well. As a result, material processing requires

more time and resources [Unreal Academy, 2019].

Peculiarities of game development

A game engine optimizer, like any other software product, is best created using

an IDE. The choice of IDE depends entirely on the development platform,

supported programming languages and the personal preferences of a

developer. In the case when there are several languages in the project (e.g.

C++ for the infrastructure and Python for scripting), the best solution would be a

combination of two development tools: one for the main programming language,

and the other for writing scripts.

Testing an optimization tool requires interaction with a supported game engine.

Testing can be automated or done manually. In case of automating the testing a

program logic, it is obvious to use unit testing libraries (e.g. Google Test) that

easily deals with such problem. However, when it comes to UI, animation and

other complex processes, developers use tools for automated testing (e.g.

Gauntlet Automation Framework).

Using of several programming languages is a common phenomenon in game

development. It allows developers to speed up the workflow by writing scripts in

languages with a high level of abstraction (e.g. Python, Lua), while maintaining

high performance using languages with a low level of abstraction (e.g. C++).

Connection of these layers of a project requires using of a specialized build tool

that will merge all scripts and core logic into a fully-fledged software product.

Being the main language for developing games, C++ is often accompanied by

other languages used for scripting or other particular problems. Lua is a

common choice due to its high performance and remarkable interoperability. C#

is another popular language that is used in game development. While using it

as a scripting language, C# still remains a powerful programming languages

with a lot of tools for code maintenance. Python is also used as a C++ partner

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

161

for scripting tasks due to its high popularity, large open source code base and

extreme ease of use. However, existing languages have numerous constraints

and caveats, and, to avoid them, companies can create their own language

from scratch or on top of existing ones.

Rendering optimization approach

First of all, a developer should explore the characteristics of the engine for

which the optimization tool is being created. The developer should study its

structure, the capabilities of its editor, the approach to creating plugins, methods

for adjusting post-processing effects and available graphics profiles. Based on

the gathered information, the developer can determine strong and weak points

of the engine, what can be optimized, and what should be optimized.

During the design phase, it is necessary to consider the interaction mechanism

of the tool with the engine, to create the prototype of the interface, to choose

programming languages, development and testing tools. Even being a

programming tool with complex algorithms inside, the optimization application

its main target audience are designers and beginner developers, therefore the

UX is vital for achieving a high download rate and getting relevant feedbacks.

Writing the code can be done in three stages: backbone, beta version and

release. At the first stage, the developer gets acquainted with the mechanism of

interaction with the game engine and available tools, creates the bare minimum

for testing and the core infrastructure for the future functionality. The next step

involves the implementation of all necessary functional requirements. After

conducting the necessary testing and receiving feedbacks, developers are

required to add new functionality (if such a decision was made) and bring the

tool to the desired state. Typically, the interface design is also edited at this

stage to make it more user-friendly.

The finished tool is recommended to be shipped using engine-specific

marketplaces. The maintenance of the tool depends on user feedback, and it

may be decided to add new functionality, change the existing one or add

support for new tools.

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

162

Requirement analysis of the proposed approach

As the tool is designed for game developers with the lack of experience with the

optimization mechanisms of the game engine, it must solve a range of specific

problems. The goals of the tool are:

1. Facilitate the use of the game engine editor functions;

2. Accelerate the process of developing game projects;

3. Simplify the rendering optimization process in game projects.

To meet all business requirements, the developer must add a significant

amount of functionality for the tool. The list of functional requirements should

contain the following items:

― Ability to open the tool menu;

― Ability to create LOD for multiple objects at once;

― Ability to change light from dynamic to static, and vice versa;

― Display of the number of processed frames per second;

― Estimation of time costs for each category of graphic processes;

― Ability to change the post-processing effects for multiple areas;

― Work with many light objects at the same time.

Creating LOD is one of the key processes in optimizing rendering. Most game

engines require a developer to create and configure them yourself. The tool

should make this process easier and faster.

Dynamic light is a very expensive graphics process, as it checks the

coordinates of an object and creates shadows in each frame. In many

situations, it is safe to replace dynamic light with static light, which does not

generate shadows in real time. Static light redraws the textures of the objects

around at compile time, so it has almost zero performance overhead.

The post-processing effects also significantly slow down the rendering process.

Effects such as ambient occlusion, depth of field, and bloom are often used,

therefore the tool should control all of them.

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

163

To monitor the performance of the tool, user need to obtain information about

the rendering process. That being said, it is necessary to include both the FPS

counter and the GPU profiler into the tool.

System requirements are the same as of the targeted game engine. Crucial

parts of the hardware are GPU, CPU and RAM, therefore one should consider

using best parts available. Recommended specifications are:

― GPU: Nvidia GeForce 2080 RTX;

― CPU: AMD Ryzen 9 3900X;

― RAM: 32 GB.

Peculiarities of the proposed approach

Standard rendering procedure is described on the figure 3.

Vertexes

XML

Quads2

Fragments

Figure 3. standard rendering procedure

Represent explanation about sequence diagram messages.

Model is stored in XML file. The first procedure (message 1) is to obtain

vertexes from it. Then a list of quads is generated (message 2). After that

quads are divided into fragments to implement different shaders (message 3).

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

164

Proposed approach contains additional operations aimed to reduce rendering

time and used resources for rendering.

Sequence diagram of the proposed approach is represented in the figure 4.

Vertexes

XML

1

Quads2

Fragments

loop

[parameters]

5

loop

[parameters]

3

Figure 4. Proposed rendering approach.

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

165

Message 3 contains the set of operations aimed to optimize number of vertices

in model. In our software tool user can manage LOD that influences to number

of tessellated polygons in model. Message 5 aimed to optimize number of

shaders aimed to provide realistic representation of rendered picture.

Analytical representation of rendering process

In order to propose flexible and extensible approach analytical form of optimized

rendering procedure is performed. Foundations of analytical representation of

UML behavioral models, using graph representation, are proposed in paper

(Chebanyuk, 2018a).

Sequence diagram (f)contains more complex structure in comparison with

structures possible to consider in that paper. Namely, it has cycle constructions,

needed to be expressed with parameters.

That’s why we consider the continuation of this approach, proposed in

(Chebanyuk et. al.,2018) where analytical representation of cycle operation are

proposed

1 1 2 1 1
((, ,),..., (, ,), (, ,),...(, ,), (, ,))n m p r w w stk k

el l el el l el el l el el l el el l el 

(1)

where O – is a denotation of cycle operation.

Analytical representation of general rendering procedure is the next:

Compose an array of objects and links for the UML Sequence Diagram.

1 2 3 4
{ , , , }

{1,2,3,4,5}

el XML el Vertexes el Quads el Fragments

L

     


 (2)

Representation of two loop operations.

1

2

{(,3,)}

{(,4,)}

Quads Quads

Fragments Fragments

 

 
 (3)

Representation of full chain of events

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

166

1 1 2

1

2

{ ,1, },{ ,2, }, ,

{(,3,)}

{(,4,)}

XML Vertexes Vertexes Quads O Och

Quads Quads

Fragments Fragments



 

 

 (4)

Such representation allow to understand general idea of rendering optimization

approaches. Cycle (3) can include necessary number of operations setting

polygon parameters. Cycle (4) can include necessary number of operation

aimed to optimize fragment representation, as it is needed for the best

realization by architecture, operating memory, and other resources included to

rendering. Taking 0 operation one can skip one cycle and add as many

operations as it needed to other cycle.

Experimental results

The user interface is presented in the form of a menu that contains all

necessary functionality to interact with the optimization tool. The menu is

presented in the form of modules, each for a separate category of optimization

settings. The module contains a brief description of the functionality inside. All

functions has a short description and a button to call them. Additional options

are possible for some of them. The prototype of the module is shown in the

Figure below.

Figure 5. Main menu module interface prototype

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

167

The top panel of a module contains a name, a short description and a button

that can hide/reveal the functions of the module. Each function is placed on a

separate line. There is a brief description of the function actions on the left side

of a line, and a button that calls the function on the right. Also, to the left of the

button, there can be parameters which a user can set manually if such

functionality is provided.

Functions can either start certain procedures for processing game scene

objects or open submenus to manage settings. The submenu is presented as a

list of parameters that can a user can assigned a value or turned on/off. The

prototype of the submenu is shown in the next Figure.

Figure 6. Submenu interface prototype

A submenu opens in a separate tab, which by default is displayed in a new

window. Each object is located on a separate line. There is the name of an

object on the left of the line, and the parameters on the right side. Enabled

settings are highlighted when disabled are darkened. Also, if the setting is

disabled, its value cannot be edited. This is indicated by the dimming of the

parameter selection field.

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

168

Figure 7. Tool functions and their parameters

The Create LODs function allows a user to create LOD for each selected object

that belongs to the Static Mesh Actor class. The user can specify the number of

LODs for this group of objects, as well as the power of optimization of static

meshes. The optimization power is the coefficient by which the number of

polygons for the next LOD will be determined. For example, for a static mesh of

1000 polygons, the user selected the number of LOD 3 and set the optimization

power to 2. In this case, the tool will create 3 LODs with the following number of

polygons:

― LOD 0: 1000 polygons;

― LOD 1: 500 polygons;

― LOD 2: 250 polygons.

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

169

Figure 8. Cast Volumetric Shadow turned off (left) and on (right)

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

170

The Set-up lights function allows user to adjust all the light objects at once that

are on the game stage. This is achieved by displaying these settings in a

separate submenu. A brief explanation of the parameters is given:

― Cast Shadows determines whether a shadow will be generated from this

light object;

― Cast Dynamic Shadow determines whether the light object will generate

a shadow in real time;

― Cast Deep Shadow determines the quality of the shadow;

― Cast Volumetric Shadow allows you to enable or disable the shadow

scattering effect;

― Enable Light Shaft Bloom determines whether the rays of the light object

will create a glow effect.

The AO Settings function allows the user to adjust the ambient occlusion effect.

This feature is also displayed in a separate submenu to allow editing of multiple

post-processing areas at once. The parameters of this function are the intensity

setting of the ambient occlusion effect, the radius of propagation, the strength

and the quality of the ambient occlusion.

The Bloom settings function allows the user to adjust the glow effect. The

principle of operation is similar to AO Settings, only with other parameters. Here

the user can assign values to the intensity of the bloom effect, the maximum

threshold and the coefficient by which the levels of the bloom will be

determined.

The DOF settings function allows you to adjust the depth of field effect. It works

similarly to the two previous functions, but the parameters here are focal

distance, blur radius and blur amount.

The last two functions allow you to get information about the rendering process.

The first (Toggle FPS counter) allows to get the number of frames processed

per second. The second (Run GPU Profiler) allows to get the information about

the time spent on each of rendering processes.

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

171

Figure 9. Comparison of minimum ambient occlusion power (left) and

maximum (right)

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

172

Figure 10. Intensity of a bloom effect is set to minimum (left) and maximum

(right) value

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

173

Business logic

Business logic functions are mostly focused on implementing the functionality

available through the user interface. However, a special software infrastructure

is required for the tool to function properly.

One of the most important infrastructural solutions of business logic is to make

a widget in a separate window (Dispatch Widget). This is achieved by calling

the procedure for creating a tab in the editor and assigning a widget to it. This

feature does not create a widget on its own to allow the user to modify the

widget before tabbing.

Unreal Engine does not allow to make changes to the post-processing area

object [Unreal Engine 4 Documentation, a]. To provide settings through the tool

menu, developer needs to create a number of accessors and mutators of the

fields of the post-processing settings class.

Figure 11. Business logic infrastructure

Another problem with Unreal Engine is that it does not allow changing the

ListView’s internal widget class from the outside [Unreal Engine 4

Documentation, b]. At the business logic level, this was solved by extending the

ListView with the addition of a mutator to change the internal class.

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

174

To ensure the safe creation of LOD without accidental errors in the form of an

attempt to access a static mesh of a class other than Static Mesh Actor, a

filtering function was created. The input parameter is an array of any objects

from the game scene, and the output is an already filtered array containing only

the Static Meshes Actor classes.

Implementation

The menu consists of two modules: general settings and post-processing

settings. General settings include functions for displaying the FPS counter,

launching the GPU profiler, adjusting light objects, and creating LODs. The

post-processing settings includes ambient occlusion settings, depth of field

settings, and bloom settings.

C ++ language was chosen to write the infrastructure of the tool, and the logic of

the user interface was created using the Blueprint visual programming

technology.

The infrastructure includes two blueprint function libraries and a UListView

extension class. The first library contains all the important accessors and

mutators for working with the post-processing settings of the

APostProcessVolume class, and the second library contains all other editor

extensions. The functions of these libraries are not private, so the user can use

them outside the menu of the rendering optimizer.

A number of widgets have been created for the interface, and each of them is

responsible for displaying their own specific category of settings. One of the

most important widgets is the submenu widget which provides a template for

creating list widgets. There is also a widget among them that serves as a

template for menu modules. All other widgets are used in specific menu

functions as internal widget classes for the ListView of the submenu widget.

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

175

Figure 12. Finished tool main menu interface

Testing results

It was impossible to test the prototype in a complex project, however, even in

primitive one it gives fascinating results. Adjusting the light and creating the

LOD gave the biggest increase in performance. The testing was performed on

devices with the following characteristics:

― OS: Windows 10 64-bit;

― CPU: Intel Core i5-7500 3.4 GHz 4 cores;

― RAM: 32 GB;

― GPU: Nvidia GeForce GTX 1060;

― DirectX version: DirectX 12;

― Unreal Engine version: 4.26.2.

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

176

Although it is impossible to estimate the true effectiveness of the tool on a

primitive project, even in this case the tool was able to save 1.54 ms on each

frame, which is 13.56% of the initial result.

Conclusion

Paper proposes approach to increase rendering speed due to flexible settings

of procedures needed to optimize rendering process (1)-(5). Flexibility allows to

user of game framework to choose set of settings advisable to archive the best

representation of series for rendered frames from different kinds of settings

(figures 8-10).

Testing results show raising of effectiveness for fixed hardware configuration.

In order to verify proposed analytical approach of rendering optimization

requirements specification for the development tool for Unreal Engine is

designed. Then the architectural solution is proposed.

The main purpose of the developed tool is to accelerate the development of

game projects and facilitate the settings of graphics. In the future, it is planned

to refine the tool and add more functionality needed for graphics settings.

In the future, this will allow to quickly and easily expand the functionality of the

optimization tool.

Further researches

Further researches are aimed towards the improvement of the tool and

spreading analytical approach of rendering optimization described in this article.

It is planned to implement a project evaluation system that will give user

suggestions and will show the mark of the project depending on the hardware

bottleneck and current performance. The other important feature is the custom

GPU profiler that will give more information about rendering processes and will

allow to test multiple specified places in the virtual scene in one run.

International Journal “Information Theories and Applications”, Vol. 28, Number 2, © 2021

177

Bibliography

(Chebanyuk О., 2018) An Approach of Text to Model Transformation of

Software Models. In Proceedings of the 13th International Conference on

Evaluation of Novel Approaches to Software Engineering (ENASE 2018),

432-439

(Chebanyuk O., et al, 2018) Chebanyuk O. & Dyshlevyy O. & Skalova V. An

approach of obtaining initial information for behavioral software models

processing. International journal “Informational Models and Analysis”.

Volume 7, Number 2, 2018, 25-41.

 [Intel, 2017] Intel. Unreal* Engine 4 Optimization Tutorial, Part 4 . 2017.

https://software.intel.com/content/www/us/en/develop/articles/unreal-engine-4-optimization-

tutorial-part-4.html

[Unreal Academy, 2019] Unreal Academy. Optimization Challenge. 2019.

https://learn.unrealengine.com/course/2547341/module/5525720?LPId=89346

[Unreal Engine 4 Documentation, a] Unreal Engine 4 Documentation.

FPostProcessSettings. https://docs.unrealengine.com/4.26/en-

US/API/Runtime/Engine/Engine/FPostProcessSettings/

[Unreal Engine 4 Documentation, b] Unreal Engine 4 Documentation. List View.

https://docs.unrealengine.com/4.26/en-US/BlueprintAPI/ListView/

Authors' Information

Olena Chebanyuk – Software Engineering Department, National

Aviation University, Kyiv, Ukraine,

Major Fields of Scientific Research: Model-Driven Architecture,

Model-Driven Development, Software architecture, Mobile

development, Software development,

e-mail: chebanyuk.elena@ithea.org , chebanyuk.elena@gmail.com

Mykhailo Mushynskyi – National Aviation University, Kyiv, Ukraine; Software

Engineering student,

Major Fields of Scientific Research: Game Development, Game Engines,

e-mail: mmmikeuser@gmail.com

https://software.intel.com/content/www/us/en/develop/articles/unreal-engine-4-optimization-tutorial-part-4.html
https://software.intel.com/content/www/us/en/develop/articles/unreal-engine-4-optimization-tutorial-part-4.html
https://learn.unrealengine.com/course/2547341/module/5525720?LPId=89346
https://docs.unrealengine.com/4.26/en-US/API/Runtime/Engine/Engine/FPostProcessSettings/
https://docs.unrealengine.com/4.26/en-US/API/Runtime/Engine/Engine/FPostProcessSettings/
https://docs.unrealengine.com/4.26/en-US/BlueprintAPI/ListView/
mailto:chebanyuk.elena@ithea.org
mailto:mmmikeuser@gmail.com

