
International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

233 

 

DEVELOPMENT OF NATURAL LANGUAGE DIALOGUE 

SOFTWARE SYSTEMS 

Anna Litvin, Vitalii Velychko, Vladislav Kaverinsky 

 

Abstract: This paper discusses problems of natural language dialogue systems 

development. Here are considered different types of such program systems and 

their peculiarities based on our development experience. The systems 

discussed here are aimed at using graph ontological databases. Five basic 

types of natural language systems are highlighted: reference system, reference 

system with clarifying and technical questions, questionnaire system, active 

initiative system, control system. The first four of them are considered in detail. 

The reference system type, which is the basic type, is shown and discussed. 

Problems considered here are: natural language phrase to a formal query 

transformation, semantic analysis and answer formation. The ways are shown 

for these processes program implementation. For all the types the problem of 

the current dialogue subject keeping is considered, especially for an active 

initiative system where it is the most crucial. The different approaches are 

shown and compared for the principles of graph database (ontology) 

construction, which could be used in the dialogue systems. 

Keywords: natural language dialogue system, ontology, graph database, 

dialogue subject keeping. 

ITHEA Keywords: I.2.7 Natural Language Processing, E.2 Data Storage 

Representations 

DOI: https://doi.org/10.54521/ijita28-03-p03  

Introduction 

The user's interface in a dialogue form is convenient and user’s friendly for 

many cases. So that it becomes rather widespread if a user is to obtain some 

information from the system (for instance, its database) or the system is to get 

http://wiki.ithea.org/tiki-browse_categories.php?parentId=150&type=&deep=off
http://wiki.ithea.org/tiki-browse_categories.php?parentId=150&type=&deep=off
https://doi.org/10.54521/ijita28-03-p03


International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

234 

some information or instructions from a user. It is known that ordinary user is 

not quite familiar neither with programming nor formal query languages. Thus 

there are two basic options: developing the interface with previously prepared 

graphical control elements like buttons, menus, and so on, which are tied to the 

determined program procedures; creating a natural language interface, which 

does not exclude traditional control elements, but the main instructions a user 

tells the system in a natural language (English, Russian, Norwegian, etc.). The 

first option nowadays is still the most popular, because it is rather easy and 

understandable in its development and the functioning of such interface is very 

predictable. But if the system control becomes complicated its complicity is also 

growing. If it is a database interface it becomes very limited in possible options 

or needs to have long and complicated menus. If the system is designated for 

obtaining information from a person, its user becomes rather restricted in the 

answering options. Thus, for both mentioned dialogue systems a natural 

language interface will be more convenient and desirable. 

Building of natural language interfaces assumes solving of some complicated 

problems, among which are the following: syntactic and semantic analysis of 

the natural language phrases for the intents included the correct interpretation; 

conversion of semantic information and obtained entities into formal queries 

and/or program instructions; presenting of the performed actions (like formal 

queries) results; keeping in the frame of current dialogue subject. 

In this paper, we are trying to present and analyze our experience in building 

natural language dialogue software systems of different types and purposes. A 

lot of attention is given to the principles of ontology structure and its influence 

on the system development, semantic analysis, formal queries automatic 

construction, and presentation results of their execution. Also, a significant 

focus is made on the problem of conversation subject (context) keeping, its 

peculiarities, and importance for the different types of such systems. 

Formulation of the problem 

The main goal of the paper is to present and analyze our experience in the 

development of dialogue systems with a different destination. To consider the 

approaches to ontology constructing, semantic analysis of user's phrases, 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

235 

formal queries automatic construction, and the interpretation of their results. To 

develop basic principles of dialogue context keeping through the conversation in 

different types of natural language dialogue systems. 

A review of existing principles of natural language dialogue system 

development 

Let us consider some known approaches to natural language interfaces and 

dialogue systems development, which include such problems as natural 

language text analysis and synthesis. 

Syntactic and semantic text analysis is an important direction in automatic 

natural language processing and natural language understanding area. 

Different approaches have been developed for this purpose. They include ones 

based on machine learning and based on the system of rules (instructions).  

The basic natural text analysis purposes are: named entity recognition, 

classification of text documents, finding answers in texts, determination of the 

intents told in the text. For such purposes as named entity recognition, 

documents classification there are several developed program implementations, 

for example, Algorithmia [Algorithmia, 2021] and Aylein [Aylein, 2021]. 

Another purpose of semantic text analysis is so-called "text mining" which is 

aimed at the discovery of previously unknown knowledge that can be found in 

text collections [Stsvrianou et al, 2007]. Text mining includes the following basic 

points: filling the database with text documents; finding existing information in 

the texts and storing it in the appropriate format; integration and querying of text 

data after it has been stored in databases; deduplication of datasets using 

standard data mining techniques, such as clustering. The natural language text 

mining process assumes the following issues: tokenization – separation of the 

test to phrases and words; determination and localization of the stop words; 

words stemming and lemmatization; clearing noisy data; determination and 

clarifying of words meaning; tagging – data part of speech characteristics; 

collocation – determination of compound terms and name groups; syntactic and 

grammatical analysis, finding of words dependency; determination of the 

importance and selection of the terms of the most representative ones; terms 

categorization. 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

236 

There are several models of text presentation. Since the context of a term is a 

useful part of semantic information, in [Rajman et al, 1999] the contest was 

represented as a vector that contains the co-occurrence frequencies between a 

term and a predefined set of indexing features. Context templates have been 

used, for instance, in [Nenadic and Ananiadou, 2006] for the analysis of 

biomedical documents. These patterns are represented in a form of regular 

expressions and also contain part of speech tags and ontology information. N-

grams are also could be useful for context determination [Stsvrianou et al, 

2007]. They were used for text ordering, representation, and categorization 

[Caropreso at al, 2001]. They replace some unigrams with bigrams and use 

document frequency and information gain to reduce the number of n-grams 

extracted from the text. In [Cimiano, 2005] the context is modelled as a vector of 

syntactic dependencies found in texts. The concept hierarchy is extracted by 

applying a method based on the formal concept analysis. A linguistic parser 

extracts the syntactic dependencies, which are weighted and from which a 

lattice of formal concepts is constructed. In [Kehagias et al, 2001] sense-based 

representation is used. But the results of that research have not shown 

improvement in the accuracy of text semantic classification compared with 

word-based representation [Stsvrianou et al, 2007]. In [Carenini and Zwart, 

2005] they attempt to match texts that describe product overviews with user-

defined hierarchy. The advantage of such taxonomy is adding background user 

knowledge to the model and reducing redundancy. But its disadvantage is that 

for every domain a user-defined hierarchy is to be created. A matrix space 

model has been proposed in [Antonellis and Gallopoulos, 2006]. It is based on 

the idea that a document consists of hierarchically extracts – sections, 

paragraphs, sentences, and terms. So such matrices as term-by-section, term-

by-paragraph, and term-by-sentence could be created. The advantage of this 

matrix representation is that it “remembers” the intermediate steps of the final 

matrix construction. 

Another part of semantic analysis is categorization. It is needed to organize text 

documents into categories and to determine to which category the considered 

text belongs. This task could be supervised or unsupervised, dependent on 

whether the categories are previously known or not [Stsvrianou et al, 2007]. The 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

237 

task and algorithms of categorization could vary depending on the purpose. The 

goal could be identification documents of the same topic; identification of the 

semantic orientation of the text; selection of papers by one author and even the 

distinction between interesting and uninteresting texts based on the person’s 

preferences.  

Many algorithms for categorization exist. In the case of thematic categorization, 

the focus is usually on noun terms that may characterize a topic. Also, machine 

learning approaches could be used [Yang and Liu, 1999], [Dumais et al, 1998], 

[Sebastiani, 2002]. A sentiment classification task deals with the texts 

classification according to the subjective opinion of the author [Jindal and Bing, 

2006]. In this case, the focus is on finding the semantic orientation of words. In 

[Hatzivassiloglou and Mckeown, 1997] the main focus was on adjectives ant 

they study phrases where adjectives are connected with conjunctions such as 

“and” or “but”. They use a log-linear regression model to clarify whether two 

adjectives have the same orientation. Then they divide the adjectives into two 

sets considering the set of the higher frequency to be a "positive" one. To 

discover the semantic orientation of words, they use an LSA-based measure to 

find out the statistical relation of a specific word towards a set of positive or 

negative words. Sentiment classification seems more difficult than the topic-

based one and it cannot be based on just observing the presence of single 

words [Stsvrianou et al, 2007], and reliable methods for the subjective and 

objective author’s opinions determination are still to be developed and 

employed. 

The main purpose of the semantic analysis in the framework of the considered 

here problem is the determination of a semantic type of the user’s input phrase, 

which is closely related to the intents that are assumed in it. So here we needed 

some kind of supervised semantic classification, i.e. assurgent the phrase to 

one (or might be several) of previously defined types. The final goal of this task 

is the selection of the most appropriate pattern for building a formal query. So 

let us consider some existing approaches for the conversion of a natural 

language phrase into a formal query to a graph database. 

The LODQA system was presented in [Shaik et al, 2016]. It parses a natural 

language phrase and creates a graphical representation of the request, which is 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

238 

called a pseudo graphic template. The pseudo graphic template is a graph 

pattern for finding the target graph of RDF subgraphs that match it. Natural 

language terms can be normalized for more than one RDF term due to 

ambiguity. Therefore, from one pseudo graphic template, more than one linked 

template can be obtained by normalization. To take into account the structural 

inconsistency between the attached pseudo graphic template and the actual 

structure in the target data set, it tries to generate SPARQL queries for all 

possible structural variations. The considered LODQA system is focused on the 

English language only.  

Another framework for natural language to SPARQL conversion is called 

PAROT [Ochieng, 2020]. It adopts an approach that generates the most likely 

triple from a user query. The triple is then validated by the lexicon. It relies on a 

dependency parser to process user's queries to user triples. The user triples are 

then converted to ontology triples by the lexicon. The triples generated by the 

lexicon are used to construct a SPARQL query that fetches the answers from 

the underlying ontology. Testing the PAROT framework by the authors of 

[Ochieng, 2020] showed that for simple questions it demonstrates about 81-

82% precision, about 43-56% for complex questions, and a specific thematic 

dataset (geography) precision was up to 88%. But even the authors pay 

attention to some weaknesses of PAROT: it has low precision and recalls when 

processing aggregation-based questions. 

For now, there are only a few examples of natural language to SPARQL 

conversion approach based on neural networks. One of them is described in 

[Yin et al, 2021]. Some tricks to avoid or at least minimize the criticality of typical 

machine translation mistakes are taken into account there. For instance, to train 

the model they use not SPARQL queries as they are but previously converted 

them into special sequences where language symbols and constructions are 

encoded as constant symbol sequences. Some constant query structure 

elements were omitted or abbreviated. Thus the translations result in this 

method is a specific sequence that is an instruction, by which it is possible to 

build a sufficient SPARQL query. 

FREyA is an Interactive Natural Language Interface for querying ontologies 

[Damljanovic et al, 2011]. It uses syntactic parsing in combination with the 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

239 

ontology-based lookup to interpret the question and involves the user if 

necessary. The user's choices are used for training the system to improve its 

performance over time. It deals with the English language. Query formation by 

FREyA very depends on the ontology data, and its configuration needs to be 

tuned to the certain ontology. 

Conversion for natural language questions to Cypher is still not completely 

realized and widespread, but such a tool seems to be highly desirable. Here are 

a few examples of such works: [Sun, 2018], [CypherConverter]. The system 

proposed in [CypherConverter] is quite primitive. It needs a file with ready 

natural language sentences where some words are replaced by placeholders 

and matching Cypher templates. The main advantage of this approach is 

simplicity, which guarantees that the result will be just obtained or not obtained 

without appearing in strange situations when wrong or not completely correct 

result springs up. But it has many disadvantages, first of all, for a real big 

system, a large number of phrase templates is needed which involves all 

possible users' questions considering their variety. 

The flexibility of the query template approach can be increased if rigid phrases 

templates will be replaced with semantic analysis of an input phrase which also 

recognizes the entities (words) that are to be substituted into the query template 

[Litvin et al, 2020]. 

Synthesis methods of natural language texts are an important component in 

constructing the human/computer interface, which is based on a linguistic 

processor – a component that implements a formal linguistic model and can 

work with natural language [Sudakov and Malyokin, 2012]. The main functions 

of a linguistic processor are understanding modelling (analysis) and text 

production modelling (synthesis). Applications that generate natural language 

texts work with language information as a string of characters. They manipulate 

sentences and phrases as building blocks of a future text. Such technologies 

are simple, reliable, and therefore are widely used. 

The template text synthesis system uses ready-made text fragments and 

combines them to occupy the given positions in the stereotyped text. The 

simplest realization is just to insert text fragments into templates. More complex 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

240 

template systems can perform linguistic processing, such as using some 

grammatical parameters of the text or combining template sentences into a 

binding text using certain rules [Sudakov and Malyokin, 2012]. 

The work [Bolshakova, 2014] considers the language of lexical-syntactic 

templates LSPL, which is a declarative language for the specification of the 

lexical and grammatical properties of structures allocated in Russian texts to 

automate many tasks in processing scientific and technical texts. The 

preparation and configuration of the templates are carried out by a linguist or a 

specialist in the analyzed texts subject area, without programmer participation. 

The language of lexical-syntactic templates LSPL is a declarative language with 

built-in tools for specifying the lexical and syntactic properties of structures in 

Russian-language texts. The elements of the template can be the words and 

phrases, as well as grammatical conditions. For word elements, in the general 

case, a part of speech and a token is indicated; morphological characteristics 

(case, gender, number, etc.) are specified. The matching conditions determine 

the equality of either specific morphological characteristics or all common 

morphological characters of the words being coordinated. In LSPL templates, 

you can specify repetitions of elements, optional elements, as well as 

alternative language constructs. Already defined patterns can be used to 

specify patterns of more complex natural language expressions, using their 

parameters to specify or coordinate elements of the described construction. 

Thus, we see that many approaches, methods, and tools have been developed 

to build a natural language dialogue system. Such systems are being developed 

and there is great progress observed in them. Most of them can be divided into 

three groups: based on text search, neural networks, and database interfaces. It 

should be noted that dialogue systems based on neural networks and using 

deep learning have recently become popular [Tarasov, 2015]. Such bots can 

make a good first impression. But a detailed analysis highlights some of their 

shortcomings. First of all, they have a slow learning rate. It needs a lot of time 

and large amounts of data to train such a system. An interesting feature of 

neural network-based dialogue systems is that they have difficulty simply saying 

“I don’t know”, however, this disadvantage in some cases could be inherent also 

to the other types. The third drawback is difficult results obtaining reasons 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

241 

interpretation: how it being guided and why this and not that answer was given. 

And, therefore, it is difficult to verify the adequacy of such an answer [Levin, 

2016]. 

An example of a well-known modern dialogue system could be the Mitsuku 

chatbot developed by Steve Worswick [Kuki]. For its development AIML 

(Artificial Intelligence Markup Language) [AIML] language was used. It is 

considered one of the best natural language dialogue systems and is a 4-time 

Lobner Prize winner. However, Mitsuku testing has revealed an important 

disadvantage: it does not well keep in the context of the dialogue, it simply 

forgets what has just been discussed, and does not distinguish between really 

interrogative and imperative phrases and answers to the questions given in a 

matter similar to such phrases types. 

A good alternative to dialogue systems based on neural networks could be ones 

using ontology in a form of the graph database, which is considered in this 

paper. As we can see from the review above, there is a rather big experience in 

the word on building natural language interfaces and needed for them 

grammatical, lexical, and semantic analysis methods. However, the existing 

approaches still have the potential to be further developed and new ones are 

also ought to be tried to create and tested. In this work, we make an effort to 

consider and analyze our experience in natural language dialogue system 

creation and to figure out the perspectives of further development of the 

proposed approaches. 

Dialogue system types 

A dialogue software system is a form of a program interface designed to interact 

with a user imitating a conversation. The type of such interface, considered in 

this work, implements the communication between a user and program in 

natural language. The user is able, depending on the purpose and 

implementation of a particular system, perform one or several of the following 

actions: to ask a question, to ask (to command) the program to perform some 

action, answer a question issued by the system, express a narrative phrase that 

is not an explicit question or imperative, but assumed a response from the 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

242 

program (comment, advice or action according to the described situation). The 

system can perform the following actions: to give an answer to a question, to 

ask a question, to perform some actions (if they are possible and provided by 

this system), to give some comment or narration. In a certain software system, 

the above types of actions can be implemented only partially and selectively, 

depending on its purpose. Natural language interaction between the program 

and the user at a given technological level can be realized both in written and 

oral forms. Within this work is only considered the written interaction type, 

because oral interaction can be reduced to a written one using software 

solutions that implement speech recognition and synthesis. Significant success 

has been achieved so far in the development of such transformation processes, 

and their further development continues [Shaik et al, 2016], [Ochieng, 2020], 

[Yin et al, 2021]. However, these methods are separate areas of knowledge and 

are not considered here. The variants of dialogue systems that work with the 

written language could, if desired, be adapted to work with an oral speech by 

adding to them modules of recognition (speech into text) and synthesis 

(generation of a sound from a text). 

Depending on the functionality implemented in a particular dialogue system, 

both from the user and program sides, various options are possible. Each of 

them can have its application's area and features of the tasks to be solved 

during its development. Here are some of the typical options: 

1) A user can ask questions, as well as enter imperative phrases (requests) with 

the meaning of information request, but neither more. The system only answers 

the user's questions, but does not ask questions, does not provide any 

information without the user's request, does not launch any processes that are 

not related to the search and giving of information. This version can be called a 

"question/answer" reference system, a natural language interface to a database 

or their combination. 

2) A user can ask questions end enter imperative phrases that have a piece of 

information requesting purpose. The system not only gives answers to the 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

243 

user's questions but also asks questions but is limited. The essence of the 

limitation consists in the following: questions asked by the program have rather 

a technical goal, such as the user's question semantics clarification, requesting 

of the concepts subject area. Questions of a purely technical nature are also 

possible, such as "Do you want to complete the dialogue?", "Are you satisfied 

with the received answer?" etc. This is, in fact, also a help or reference system, 

but supplemented by the possibility of refinement to increase the relevance of 

the answers. 

3) A system that asks questions to the user. Responses to a user interface are 

either not implied at all or are purely formal and followed by a question. It may 

also be possible to receive the resulting response of the system after a 

questions series. The system's response will be based on the collection of 

responses given by the user. The user, in turn, can only answer the questions 

posed by the system, which, within the framework of the considered paradigm, 

will occur in natural language. Such a type of dialogue system implementation 

can be acceptable for automatic questionnaires, testing, or diagnostics systems. 

4) The user can both ask questions to the system and answer questions coming 

from it. The types of actions that the system can perform are similar. Also, the 

additional types of actions in this variant are input and output of declarative 

phrases without interrogative or imperative meaning, which, in turn, can be 

commented, ignored, or they can be followed by a question, request, or a 

narrative phrase. This is a "virtual companion" system type, a typical 

conversational natural language chatbot. 

5) The user gives instructions to the system in the form of imperative 

statements aimed at starting or stopping some action. Also, optionally, the user 

can ask questions, but only about the status of the running process execution or 

about the action completion. Based on the instructions of the user, depending 

on its purpose, the system performs some action or starts a process. This can 

be either a purely software process on a computer, or actions performed on 

surrounding objects ("turn on/off a device", "change the sound volume"," 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

244 

Start/stop a technological process ", etc.). An action is performed if it is 

technically possible and provided in this system. Also, such a system can 

optionally give natural language responses related to the fact of the start/end of 

the action, the process status, the results of the execution, the ability to perform 

the requested action, etc. This is, in fact, a control system interface. This type is 

not considered within the framework of the current work, since it is, in fact, a 

variety of types 1 and 2, supplemented by starting a process and controlling it. 

The launch of processes on a computer by a program and their control belongs 

to system programming, and the control of objects of the material world belongs 

to automation and robotics, which is beyond the scope of our research. 

Here will be considered the first 4 of the listed options and the problems related 

to their implementation features, as well as technical solutions proposed for 

such software systems implementation. 

The question/answer reference system is the most technically simple and could 

be considered as the basic version of a dialogue system. It is essentially a 

natural language database interface. 

Graph databases 

Within this work will be considered graph databases of the ontological type. 

Such databases have several advantages for interactive systems building. So, a 

graph database, in the general case, is easily expandable, new nodes and links 

can be added to it, including their new types, and it could be performed in a 

fairly arbitrary order. Unlike a relational database, a graph database does not 

require a pre-designed schema of related tables and their field types. It is 

devoid of some typical problems which could arise when deleting and adding 

new fields, especially foreign keys, such as ambiguity of default values, loss of 

a foreign key reference object, etc. A graph database is convenient for 

representing objects collections that have a natural graph structure. In 

particular, it could be suitable for ontologies implementation, which are 

representations of objects and phenomena of a certain subject area and 

connections and interactions between them. One of the ways to implement a 

graph database could be an RDF triples storage, which is built on the principle 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

245 

of object – predicate – subject atomic structures. Any related structure can be 

represented in this way [Gomez-Perez et al, 2002]. To implement queries to 

such databases SPARQL [Antoniou, 2016] language is traditionally used. 

SPARQL queries are mainly considered in this work owing to their popularity 

and widespread use for such databases. There are several formats for storing 

information in the form of RDF triples. We, in particular, used RDF/XML. The de 

facto RDF/XML variant is OWL. The main difference is that RDF assumes a 

fairly arbitrary system of predicates and node types, but the OWL standard 

imposes restrictions on them. In particular, in OWL, data (graph vertices) can be 

a class, a property or an individual, possible relationships (and therefore 

predicates) are as follows: a subclass of the class, an instance of the class, a 

sub-property of the property, a domain of the property, a range of the property 

(domain and range refer the property to classes), equivalence, difference. OWL 

also allows storage of some additional information, such as Label, Comment, 

Language, and some others. In common the types of additional information 

bound to a class, property, or instance (Annotations) could be quite arbitrary. It 

should be noted, that the OWL format is converted into a set of RDF triples, 

where different types of “Annotations” form the corresponding predicates. Thus, 

OWL and RDF/XML are largely interchangeable. Another option for 

implementing a graph database, which was used in our projects is Neo4j DBMS 

which uses the Cypher query language. It is a high-performance, scalable open-

source graph database management system [Goel, 2015]. At the moment 

(2021) it is the most popular and widespread graph database management 

system, significantly ahead of such competitors as ArganoDB, Virtuoso, 

AllegroGraph, OrientDB, etc. [DBEngines, 2021]. It allows one to apply 

additional optimization for data with a complex structure, the graph processing 

does not require placing it entirely in the RAM, thus processing very large 

graphs is possible [Goel, 2015]. 

Reference dialogue system. Basis principles of formal queries 

construction on natural language phrases. 

The general scheme of the dialogue system of the "question/answer" type is as 

follows. User messages are analyzed for meaningful entities extraction. 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

246 

Semantic analysis of the user's phrase can also be carried out. Its result is a 

certain semantic type of the input phrase, which can then be used for the 

following purposes: determination of a scheme for significant entities extraction, 

selection of a formal request constructing paradigm, selection of an ontology the 

formed formal query will be directed to, determination of a form the answer to 

be presented to the user. Then, using the obtained data, a formal query to the 

database or a set of them is to be built. The received formal request or the set 

of requests is sent for execution to a service that interacts with the DBMS. This 

service can also perform some additional queries to the database. This can be 

done for the following purposes: queries with entities that have undergone 

reduction if the query results are not received (in this way more general 

concepts or closely related concepts are requested, which increases the 

probability of an answer receiving, although perhaps less relevant); request for 

additional technical information that can be used, for example, for ranking the 

responses (such information, for example, can be the repetition of the 

requested concepts in the response text if the response is a certain piece of 

text); obtaining additional information related to the requested information, 

which may also be of interest to the user (in this case, for example, a section 

"see also on the topic" or "perhaps you will be interested" may be added to the 

answer, containing in a collapsed form related information items obtained in this 

way). 

Further actions will be related to the nature of the responses received from this 

database. The most primitive option is simply to return the resulting set of 

results to the user as a response. But this is not always acceptable. So the 

result of a query can be merely a link or a set of links to response texts, which 

are obtained from another (document-oriented) database. Also, the answer can 

contain media content – images, video, and sound inserts, as well as external 

links substituted from other sources. In this case, additional processing of the 

response text should be carried out to substitute the corresponding materials 

indicated in it or links to them in the appropriate positions. Also is not excluded, 

the case of multiple responses received as a result of the request. In this case, 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

247 

further actions depend on the expected semantics. So, in many situations, the 

user's question suggests a listing of certain entities as an answer, such as 

"What journals exist on the problem N.?" or "From what writers did N. receive 

letters in 1968?" In this situation, an enumeration is formed from the list of 

obtained results, which is substituted in the response. A similar situation is 

when it is supposed response formation from several parts. For example, a 

request returns, as a result, a certain set of entities (title and body of the text; 

event description, date, and place, etc.). A completely different situation is when 

the result is a ready response text (definition of a concept, detailed explanation, 

instructions, etc.). In this case relevance ranking of the received responses is 

needed. The ranking method by calculating the corresponding metric is 

described in our work [Litvin et al, 2020]. Also, additional answers, received by 

additional queries execution, if any, are also subjected to ranking. The ranking 

process could occur even at the stage of the queries forming and executing. So, 

a query made using more reduced entities will have a lower rating. It is also 

possible that several types of queries are assumed. They are ranked according 

to a decrease in probable relevance. The next one is to be executed if there are 

no results for the previous one, or just to obtain additional related information. 

For example, the question looks like "What is N.?" Several types of formal 

requests are provided for it: a request for the definition of the concept N.; a 

request for clarification on the concept N.; a request for the class to which the 

concept N belongs; a request for entities related to the concept N. in any way. It 

is obvious that the potential relevance in these semantic types options 

associated with this question, respectively, decreases. 

After receiving answers to formal requests and ranking them (if necessary), the 

next step is to provide this information to the user. One of the possible 

operations has already been named, that is the substitution of media content if 

any. If the complete ready response text is received in this way, then it is simply 

transferred to the user interface, additional information is also transferred there, 

but for displaying in a collapsed form that could be expanded if desired. 

However, there are situations when, the obtained result is not a complete text, 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

248 

but only a set of entities. Providing such an answer directly to users is possible, 

but it will look sloppy and not friendly enough. Therefore, a more acceptable 

option in this situation is to generate a phrase for the answer. For this, the 

following data are used: the semantic type of the user's question, or rather the 

type of formal request based on it; words from the user's original phrase; 

predefined phrase elements (selected based on semantic type); the results of a 

formal query themselves. More details about the method of natural language 

answers generating from program responses using flexible templates are 

described in our work [Velychko, 2020]. 

Let us consider in more detail such components of the above process as 

semantic analysis of the original phrase and the formation of a formal request 

since these stages play a key role in it and determine the relevance of the 

response. 

The database of the system could be a single ontology (one graph) or a set of 

several ones. The second type is suitable when there are some different 

subjects or topics the system is devoted to. Few smaller graphs in this situation 

are more acceptable because operation on them could be performed faster and 

the probability of information adulteration from outlying subjects is significantly 

less. But if the database has several graphs there appears a problem of the 

most suitable one selection to perform the certain query. In our dialogue 

systems, it is solved in a rather simple way. Each of the ontologies has a set of 

keywords bound to it which represent the concepts and terms included in it. 

These lists are quite long – from tens to hundreds of words, depending on the 

graph size. These keywords lists are to be compared with the list of entities 

selected from the input question for the formal query formation. Each of these 

terms is to be checked whether it is present in the keywords list. That ontology 

is to be chosen for which its keywords list contains most of the input concepts. If 

this number becomes equal for several ontologies it should be chosen one 

which keywords list contains fewer other concepts, i.e. is shorter. It decreases 

the probability of search noise appearance. There also could be a previous 

stage where a certain group of ontologies is selected. For this purpose are used 

words directly from the input phrase. The presence or not the presence of some 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

249 

words there leaves only a few of the ontologies for the following selection by the 

described above method. This technique was practically tested in our reference 

system devoted to the oeuvre of Ukrainian writer Oles Honchar and showed 

acceptable results. In that case, the keywords lists were automatically created 

when unmanned ontological graph creation. Preliminary ontology group 

selection was manually created and in the case divided the input questions into 

two groups: about O. Honchar's works and letters to O. Honchar. This previous 

stage was needed here also because there were two different types of 

ontologies structure, which were needed different query structures. 

Except for the selection of the most relevant graph, a very important part of the 

semantic analysis is the determination of question semantic type. However, it is 

needed not in all the system paradigms. We have built and tested several 

dialogue systems that are used only one universal query template for every 

case. Let us describe this method, which has both its advantages and 

drawbacks. The first thing is the ontological graph structure that was described 

in our work [Litvin et al, 2020]. Briefly, exposition is as follows: the graph 

contains concepts atomized to words classified to several groups according to 

pars of speech; on lower hierarchy levels (subclasses) there are name groups 

that extend the parent concept, there could be any number of hierarchy levels 

on each next concepts contain one more extra word; there are links to ready 

answers in the ontology, which are descendants of the corresponding entity 

"Ready answer"; there is a group of properties that inherits "Main property", 

which binds the sets (intersections) of the present in the ontology concepts to 

the corresponding link to a ready answer, where the domain is the set of 

concepts and range is a link to an answer text. Also in the graph, some 

additional technical information is stored, for instance, data on the repetition of 

some concepts in the certain answers texts, which is used as one of the factors 

for answers ranking. From the input user's phases, the program extracts all the 

meaningful concepts except auxiliary words. All of the entities in the lemmatized 

form are used for substitution into the query template. Then the extracted set of 

words undergoes reduction. During it, the words are removed one by one so 

each following query is aimed at a wider concept than the query with the initial 

set of words. At this stage occurs the problem of the reduction order, i.e. 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

250 

removing which terms make correspondently more or less meaning loss and 

possible misinterpretation. Also, here appears another problem: if the initial 

phrase and so extracted set of words are rather long there will be a big number 

of the reduction options. Processing of all the possible options could become 

quite time and recourse-consuming, which is not desirable for dialogue systems 

operating in a real-time regime. Our projects we basing on the practical 

experience and possible semantic value of different word types have proposed 

the following reduction scheme. Several levels of reduction are performed each 

next of them is assumed as possibly less relevant: 1 – removing of verbs only; 2 

– removing of numbers only; 3 – removing of the question, negotiation, and 

binding words only; 4 – removing of verbs and question words; 4 – removing 

verbs, numbers, question, negotiation, and binding words; 5 – removing of 

adjectives; 6 – removing of adjectives, question, negotiation, and binding words; 

7 – removing of nouns and adjectives; 8 – only verbs and numbers remain; 9 – 

only verbs remain. Then it performs a series of random reductions merely by 

just phrase shortening doesn't matter by what part of speech. This stage could 

be as long as possible, the reduction of user's phrases usually is not a very 

consuming process but the performing of the queries is. So in practice not all 

queries formed using these options of reductions often need to be performed. If 

just one answer is needed the process may be stopped after the first not empty 

query response obtaining. If some additional information is to be obtained there 

will be enough to perform that number of queries which gives you the desired 

number of responses not equivalent to each other. This uncomplicated 

approach was implemented and tested by us for several dialogue reference 

system and have been shoving rather acceptable results: it extracted answers 

hooked on at least a few related concepts and also pulled more or less related 

information (both after a single query and their series). Moreover, the obtained 

in such way responses (excluding long responses sets returned by a single 

query performance) appear prearranged. After subsequent metric ranking [Litvin 

et al, 2020] the most relevant of the responses occur on the top.  

The advantages of such an approach are following: simplicity – deep semantic 

analysis and many query templates are not needed; universality – it needs a 

rather simple ontology structure that building from natural language texts could 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

251 

be quite easily automated, it does not very dependent on the language structure 

and can pull answers (more or less relevant) in the most of cases related to the 

ontology subject. However, it also has some strong disadvantages, among them 

are the following: it is aimed at a certain simple ontology structure, so it is 

unable to deal with complicated semantic graphs of advanced structure created 

by separated persons and teems based on their subject vision and not familiar 

with the described above approach; it is devoid of semantic focus, and this 

leads to some drawbacks – sometimes rather long query set is needed to obtain 

at least some information, which is consuming, there is no guarantee of 

semantic shades relevance, especially using reduced concepts sets. So that, to 

operate with more complicated semantic graphs a more advanced approach 

was developed. Here we give a brief description of it. 

It is assumed that terms in graph nodes are not atomized to single words and 

short name groups but could be rather deployed concepts containing up to tens 

of words. There are possible many types of relationships between the graph 

nodes which correspond to semantic types. The semantic relationships types 

could be general or specific to the subject, which may simplify the ontology and 

queries structure. Such graphs could be stored in RDF/XML or Neo4j formats. 

Restriction to using only standard OWL predicates and types leads to 

unnecessarily complicating both ontologies and queries. Let us consider an 

example: we are to express a simple statement “the antifriction bushing is made 

of tin bronze" in a formal way – as a part of an ontological graph. If we want to 

use the standard OWL methodology only, one of the manners will be as follows. 

There are two classes "anti-friction bushing" and "tin bronze", they might be 

descendants of higher hierarchy classes, for instance, "bushing" and "bronze", 

correspondently, which are also may be descendants of higher ones 

"machinery" and "material", but for the current purpose in doesn't matter. The 

main goal considered here is semantic binding, which is not hierarchical. So in 

OWL, we need a property, it may be something like "material" or "is made of" (to 

avoid mismatching with the corresponding class name). This property itself is 

abstract one or binds only higher hierarchy classes like "machinery" and 

"material" in this case. For more certain entities binding, it should have 

descendants; each of them binds a certain product to its material or materials (if 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

252 

it is made of several ones). Here this property may be something like "anti-

friction bushing material". The domain of this property will be "anti-friction 

bushing" and its range "tin bronze" that are linked to the correspondent classes. 

Using RDF/XML the construction can be simpler. The hierarchy of the classes 

remains the same, but it is not the subject. We merely need one arbitrary 

predicate "material" or "is made of". So we have ready RDF triple: object – "anti-

friction bushing", predicate – "material", subject – "tin bronze". The same 

construction appears using Neo4j. In this case, we have two nodes "anti-friction 

bushing" and "tin bronze" and a directed relationship between them of type 

"material". The direction of the relationship comes from the node "anti-friction 

bushing" to "tin bronze". And now let us compare formal SPARQL (or Cypher) 

queries for the considered cases. Perhaps the goal of the query is to return the 

machinery parts made of tin bronze. For the described above OWL structure the 

SPARQL query will be: 

SELECT DISTINCT ?result WHERE { 

 ?propName rsdfs:subPropertyOf :IsMadeOf. 

 ?propName rdfs:range :TinBronze. 

 ?propName rdfs:domain ?className. 

 ?className rdfs:label ?result. 

 ?className rsdfs:subClassOf ?intermediateClass. 

 ?intermediateClass rsdfs:subClassOf :Machinery. 

} 

In the example of the query above we need a variable for the property which 

range we know but are to ask about its domain. And formally this property must 

be a descendant of the "IsMadeOf" property, we do not need other relationships 

here. Also the class we request here, as a result, must be a descendant of 

something that is a descendant of the "Machinery" class. For RDF/XML with 

arbitrary predicates a SPARQL query with the same goal will be: 

SELECT DISTINCT ?result WHERE { 

 ?className rdfs:IsMadeOf :TinBronze. 

 ?className rdfs:label ?result. 

 ?className rsdfs:BelongTo :Machinery. 

} 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

253 

Here we have arbitrary predicates "IsMadeOf" with the meaning of the material 

semantic reference and "BelongTo" which describes belonging to something 

regardless of hierarchy. This seemingly not very significant simplification may 

have a crucial role for more complicated queries, where it might allow one to 

avoid intricate links chains. Here is another example, where we just want to 

request the years when letters have been written by some person called Sergiy 

Oleksiyovych Zavgorodniy. You can see how complicated the query becomes 

using OWL ontology: 

SELECT DISTINCT ?result WHERE { 

                ?p rdfs:range : Sergiy. 

                ?p rdfs:range : Oleksiyovych. 

                ?p rdfs:range : Zavgorodniy. 

                ?p rsdfs:subPropertyOf :FullName. 

                ?p rdfs:domain ?y. 

                ?y rdfs:subClassOf :Person. 

                ?x rdfs:domain ?y. 

                ?x rdfs:range ?t. 

                ?x rsdfs:subPropertyOf :Authorship. 

                ?t rdfs:subClassOf :TextLink. 

                ?d rdfs:domain ?t. 

                ?d rdfs:range ?r. 

                ?d rsdfs:subPropertyOf :SendingDate. 

                ?r rdfs:subClassOf :Date. 

                ?yd rdfs:domain ?year. 

                ?yd rdfs:range ?r. 

                ?year rdfs:subClassOf :Year. 

                ?year rdfs:label ?result. 

        } ORDER BY ?year 

Here a chain of several properties is used to build the linkway from the parts of 

the person's full name to the year, which is part of a date, which is bound to a 

letter text, which is bound to a person by "authorship" property, and each 

person is bind to the parts of his/her name. This is a real example of a SPARQL 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

254 

query that could be automatically constructed by the template in one of our 

dialogue reference systems. 

If in the ontology was built on somewhat other paradigm using direct arbitrary 

predicates and long deployed class names the query with the same purpose 

would have the following look: 

SELECT DISTINCT ?result WHERE { 

 ?text rdfs:subClassOf :TextLink. 

 ?text rdfs:Authorship Sergiy_Oleksiyovych_Zavgorodniy. 

 ?text rdfs:SendingDate ?date. 

 ?date rdfs:YearOfDate ?year. 

 ?year rdfs:label ?result. 

} ORDER BY ?year 

Here we can see a significant simplification and simpler queries are easy to 

construct and faster to perform. 

If Neo4j is used as the DBMS the queries in Cypher for the considered above 

two examples will be as follows: 

MATCH 

 (n:MachineryPart)-[:MadeOf]-(m:Material) 

WHERE 

 m.name = "Tin bronze" 

RETURN n.label as result; 

 

MATCH 

 (n:Person)-[:Authorship]-(t:TextLink)-[:SendingDate]-(d:Date) 

WHERE 

 n.name = "Sergiy_Oleksiyovych_Zavgorodniy" 

RETURN d.year as result; 

So we can see that Cypher queries with the same purpose could be very simple 

and understandable also owing to the possibilities Neo4j provides in the graph 

building. It should be noticed that more complicated queries are also possible in 

Cypher either as graph algorithms, which made its usage preferable for most 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

255 

cases assuming large graphs with a complicated structure that also need 

queries with complex and multiplied semantics. 

As has been mentioned, usage of direct arbitrary predicates with meanings of 

semantic relationships and deployed entities for nodes makes the ontology 

more semantically structured and simplifies queries simultaneously making 

them more semantically aimed. But in terms of dialogue systems development 

arises the problem of the relation between concepts extracted from the user's 

phrase and ones to be substituted to a formal query. And differently from the 

single query template version here appear several (maybe tens and up to 

hundreds) semantic types and templates for them. So another important 

problem here is the appropriate template selection, which needs a semantic 

analysis. But at first, let us consider the issue of translation concepts extracted 

from the user's phrase to the terms that are stored in the ontology. 

In the case of ontology where the terms are rather atomized it for most cases 

will be enough to reduce the terms list originally extracted from the user's 

phrase. And also, looking ahead, the extraction of terms, in that case, was quite 

simple – it was enough to get out of less meaningful words, here terms are to 

be extracted from certain places only. One of the versions of reducing highly 

probably becomes appropriate at least one of the terms bind with an answer. 

Nevertheless, this approach has its disadvantages named above. If in the 

ontology are long terms of many words, which are also placed in a certain order 

there is a rather low probability for them to be precisely the same in a phrase 

the user wrote. And reduction does not help here. First – it does not assume the 

order of words (and enumeration of reshuffle options is a consuming process), 

second – it that method is helpless for the terms that have some additional 

words (the context expanding is generally an ambiguous problem). So in this 

case it is needed to extend or reduce the context of the obtained concepts to 

the most suitable term stored in the ontology. Sometimes some words obtained 

from the user's phrase are to be omitted but others are to be added to fit the 

concept to one stored in the ontology. To solve this problem we propose the 

following approach. There is previously prepared a file where all the terms from 

the ontology are stored in the way they are presented there. To each of them is 

binding a list of words from the concept. The words are stored in lemmatized 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

256 

form, and to each of them its part of speech is given (this revokes its 

determination during the program performance, which makes the working 

process quicker). The words set corresponding to the extracted term are 

compared with these words. Both additional and missing words are taken into 

account. To estimate the similarity degree of the input words set and one from 

the file is used the metric similar to that one from [Litvin et al, 2020]. The metric 

gives different scores to matching, additional, and missed words depending on 

their part of speech. To make the process some faster concepts which have the 

number of words less than in the most fitting for the current moment are not 

analyzed. So the most fitting term is to be substituted into the formed query, and 

its presence in the ontology is guaranteed. 

Another important task here is terms extraction. In our approach, this process is 

strongly combined with the determination of the phrase semantic type. To 

determine the semantic type a tree-based method is proposed. It is based on 

the following facts: even in inflective languages words in a meaningful sentence 

have a defined order; there are words, among which are question words, 

prepositions, verbs, and others, that are mostly responsible for the semantic 

type. In the method, a frame is moved through the phrase. The size of the frame 

is flexible and depends on the number of words under consideration. The 

coincidence of the words in the frame determines the current condition, which 

excludes some of the possible semantic types or proofs of the considered ones. 

More detailed this method is described in [Litvin, 2021]. At the end of the tree, 

one type remains, but there could be also several ones hierarchically ordered, 

as mentioned above. 

The tree for the semantic type determination is designed in that way which also 

provides determination of the position from where the concepts substituted into 

the query are taken. These concepts are obtained after the semantic type is 

determined and are represented by a set of words, which is transformed into the 

ontology concept in a way described above. 

For a reference dialogue system, where a user just asks a question, the 

problem of the context keeping is not particular. Moreover, it is condemned to 

flexibly switching its topic according to the incoming user's queries. However, 

sometimes if the system is to be users friendly, some features should be taken 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

257 

into account. One of them is pronouns substitution. In some cases, it could be 

easily done by analyzing such characteristics of the pronoun as its gender and 

number. But this does not always work, because there may be ambiguities in 

such comparing. The ambiguities could be different depending on the language. 

For example in the languages where inanimate entities don't have a gender 

distinction, like in English, using such pronouns as "he" or "she" defiantly points 

to an animate entity (often a person) mentioned before, but "it" is defiantly not 

for persons. However, it makes harder inanimate entities distinction – they all 

are "it". And in English, there is no gender distinction for demonstrative 

pronouns. In many other European languages, there is gender distinction for 

nouns for inanimate entities. So it could be easier to guess what the pronoun 

points even for inanimate entities. But this does not completely solve the 

problem, because there could be previously mentioned several entities with the 

same grammatical gender and number. One of the ways here is the usage of 

heuristics trying to guess the pointed entity by the probability of having 

characteristics or making actions (for instance, "cars do not wear hats", "cats 

normally could not be green", "trees can not be students" etc). Such an 

approach will work for most cases, except very specific and absurdum ones, 

which are rather confusable even for humans. But the mentioned approach 

needs a lot of affording for its complete realization. There should be another 

additional database, probably of ontological type, where at least possible 

entities combinations are listed. Listing of the impossible ones is not needed for 

two main reasons: if the combination is not given as possible it is treated like 

impossible or at least unlikely; there could be a great number of impossible and 

odd compositions, which will make the ontology very resource consuming and 

slow working. An easier way that does not assume having of an additional 

ontology is questioning the user about what he means if the confusion in the 

pronoun substitution appears. So we go to the second type of dialogue system 

that assumes asking some questions to the user. 

This type of dialogue system asks the user questions only if there is a technical 

need. One of them is mentioned above: pronouns substitution. There could be 

also other cases: the system "believes" that the question is exhausted, so it 

asks a question whether the user has another question of the conversation is 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

258 

over; the user initiates the dialogue end, so the system interests, if the user 

receives the right answers or not (these data could be gathered with the 

corresponding dialogues histories and further using for the program and the 

database improving); informing of the user abut that the question is not on the 

topic, which is another part of the context keeping. 

The problem of context keeping is not very crucial for the systems with a narrow 

subject ontology. There all the questions far from the subject will result in an 

empty ontology response, which leads to the warning of the user in the dialogue 

that the question is out of the subject the system condemned to. If the system is 

multi-subjected and probably has several ontologies, for a reference system it 

rather will be a better way to flexible switch from one ontology to another than 

trying to keep the user near a single topic, which could be even disgusting for 

the person. Imagine a situation, when the user just wants to ask about other 

things he is also interested in, but the system refuses to answer and instead 

proposes not to change the subject of conversation. 

Questionnaire dialogue system 

The third type of dialogue system is rather particular. It is condemned to ask 

questions rather than answer them. Such systems are also very useful in some 

situations, among which are: interactive fulfilment of a questionnaire, which in 

this way could be flexible; testing systems that, for example, check a student 

the learned material comprehension; interactive diagnostic systems that 

depending on the user's answers to certain questions determines whether 

something is going wrong and what exactly does. 

In the simplest type of such system, there is only a fixed set of questions to be 

asked to the user. The only distinction between it and the ordinary computer-

based test with automatic checking is the answering of the user in a natural 

language. Here not the questions but the answers of the user undergo a 

semantic analysis and meaningful entities extraction. So the user's phrases are 

treated as narration ones rather than interrogative. The following scheme is 

mostly the same. Depending on the semantic type and extracted concepts a 

formal query or set of them is constructed. Its results are stored, may be further 

used. 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

259 

There could be a more complicated system type where the following question of 

the system depends on the previous ones. It is a nonlinear questionnaire 

dialogue system. There could be several realization options. One of them is a 

testing system with questions about adaptation. It determines on what questions 

the user gives correct answers and for what ones the answers are wrong. So, 

depending on the purpose, the following questions will be rather from the topics 

the user is familiar with (more correct answers previously given) or contrary to 

the subjects the user is unversed in. Another version is an adaptation in 

objective hardeners of the questions: if the user is giving correct answers to the 

easier questions the following will be harder, and vice versa. Another nonlinear 

dialogue sequence in such type systems could be the following: there is a 

decision tree at the base of the dialogue control. The conditions for the 

bifurcation points of this there are determined by the answers of the user. So 

the following question shall be different depending on the result the program 

obtained using the material of the last user's phrase. 

Finally, the system may give an answer, which is the test or diagnostic result. If 

the system is just a test this final result may be, for instance, the score of 

correct and incorrect answers with the information if the test is passed and on 

what mark. If the dialogue system is a source for a decision tree bifurcation 

conditions this resulting answer is determined to be the final vertex (node) of the 

tree, which links to the diagnosis. If the system's destination is merely a 

questionnaire that is designed for database fulfilment based on users answers 

the resulting answer may not exist at all or be just formal, like "Thank you for the 

information. We have taken pleasure talking with you" or "OK. The data are 

successfully saved". 

The problem of dialogue subject keeping is the least for this type because the 

system enforces the subject by itself through asking questions that are not 

random, but are determined by the program depending on certain conditions. 

An active initiative dialogue system 

The fourth type of dialogue system is the most complicated. It assumes the 

active participation of the program in the dialogue process, i. e. it should ask 

questions and answer incoming ones, tell some facts to the user that were not 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

260 

asked previously, tell some comments related to not interrogative but narrative 

phrases of the user, and sometimes to use them for its questions asking. Based 

on such a system could be a combination of types 2 and 3, but just a 

combination is not enough. The system should flexibly, automatically switch 

from one type to another, and do in the appropriate moment. There could be 

two general schemas of the dialogue unfolding depending on which of the sides 

initiates the conversation topic by first meaningful phrase (not a formal 

greeting). Let us consider the case when the user enters such a replica. It could 

be either: question, impetration, or narration. Consider separately each of these 

three options. 

If the user’s initial phrase is a question, it assumes a system should try to 

answer it. This could be performed like in a reference type of dialogue system 

(types 1 and 2). Some answers could be obtained anyway: informative answer, 

warning about unknowing the appropriate answer, finally obtained answer after 

a clarifying question (type 2). If the system will restrict itself for cases of user's 

interrogative phrase to only an answer returning it could degenerate to the 

simple reference system. So the initiative of the program should not be 

suppressed by a user. The first thing the system can do in this case (as well as 

in the others next considered) is to determine the general topic of the first 

phrase. It could be done by the selected ontology or in a similar way. If a 

subsequent user's phrase will be determined to belong to the other topic it will 

lead to asking the question about topic change and its reason. It is already a 

partial interception of the initiative by the system. It makes the user answer the 

system question including unswerving about the reasons for the topic change. 

But the most efficient method of interception of the initiative to the system side 

is asking a question to the user directly after the just given answer without 

waiting for the user to make the next dialogue act. It could be not a question but 

a narration, however, a question is a better option, because a not completely 

closed to the question narration following the answer could be perceived as a 

rather strange part of the answer. However such phrases, if they are sometimes 

to narrations, could have a specific beginning such as "Do you know that there 

also exist such things as…" that can separate this phrase from the previously 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

261 

going answer. Such acts may go not after every answer but appear from time to 

time. To keep the conversation subject these questions initiated by the program 

could be generated randomly but related to the main topic. If a narration type is 

to be chosen for such phrase it could randomly be selected from the related 

information obtained with the main answer in a manner described above. 

If the initial phrase of the user is a narration situation is easier for the program. 

The system answer for this case could be other related narration or a question. 

Imperative phrases of the user are treated in the same way as questions. 

Another case is when the program initiates the first meaningful phrase of the 

dialogue. It could be either question or narration. If it is a question, it is assumed 

that the user will answer it. How to use the user's answer and whether it is 

useful at all depends on the system destination and the current question. If, for 

instance, the answer was about the user's name, this name is probably could be 

extracted from the answer. In the following phrases, the program can use this 

name when contacting. After the user answers, the system is quite free about 

the type selection of the subsequent phrase. If the system starts dialogue from 

a narration it could expect from the user all the options of phrase type. 

Subsequent behaviour is determined by the user's phrase almost as it would be 

at the beginning. 

The problem of the dialogue subject keeping for this type of system is the most 

crucial compared with the others. It could be divided into two parts: long-term 

topic keeping and short-term one. The problem long term being in a certain 

subject is that what has been mentioned above and is not hard to be solved but 

either is not very crucial. The possible solution is the division of the ontology on 

the thematic parts and phrases initiated by the system should be inside the 

parts which are the last involved. And there might not be a practical reason to 

force the user to keep only one topic through all the dialogue. The better way 

will be to select the most suitable ontology for the current user's phrase topic. 

But there might be some reason to give some preference to the last involved 

ontology for the case if there are two or more anthologies detected as equally or 

very closely suitable. Anyway, long-term subject keeping is rather more for 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

262 

avoiding strange and funny situations when the system "jumps" from one topic 

to another several times through the dialogue. 

Short-term topic keeping could be more crucial. It determines which subsequent 

behaviour is to expect from the user and how to treat his following phrase. The 

two main parts of this problem are pronouns substitution and semantic 

expectation. The first one has been already mentioned above and could be 

solved by the following principles: looking for the nouns and name groups in 

one or two previous phrases; if there are several candidates for the substitution, 

ask the user about the correct option; if there is no candidate for the substitution 

in the last two phrases, just ask the user, what he means saying the pronoun. 

For the phrases given the program would be a better way to avoid using 

pronouns without previously used corresponding nouns in the same dialogue 

act. It merely makes the phrases by the program more understandable for a 

human. 

A solution for the problem of semantic expectation consists in remembering the 

last phrase of the program type and purpose, which determines the sufficient 

reaction on the following user’s action. Let us consider typical cases: 

1) The program asks a question to the user. In this case, the expectation will be 

the answer to this certain question. However, the user has free will and could 

type anything: his phrase may be narrative, imperative or interrogative. 

Normally an answer to a question ought to be a narration, but in real cases, it 

does not always happen. But there also could be confusion when the user's 

phrase in a form of a question or imperative is the answer. For example, the 

system asks the user "What is your favourite movie?", and the user answers 

"Tell me a story". Grammatically this phase is an imperative. So it could be 

treated like the user has ignored the question and asked the system to tell him a 

story. But this also could be the name of a movie. There could be others 

examples like this – names of books and films sometimes may be made in a 

form of question or appeal. Here appears a question: does for all the question 

types the answer can be not in narrative form? No, it may be not for all. Here is 

the following list of question semantic types which can expect an answer that 

looks like an imperative: pointing, address, incoming direction, outcoming 

direction, separation, unification, substitution, instrumental, object of action, 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

263 

purpose, meaning, topic, object of characteristic. In the example above the 

semantic question type is "object of characteristic" (it is requested). The 

question explains that this object should be of category "movie" and it should 

have the characteristic "favourite" for the user. The expected answer – a name 

of a movie and sometimes could be in a form of imperative. A question like 

answers might be correct for the following semantic types: incoming direction, 

outcoming direction, separation, unification, object of action, purpose, reason, 

meaning, estimation, topic, object of characteristic. If the user's phrase following 

the question of the program is a question of the imperative of those types a 

good decision for the system will be asking a clarifying question about whether 

these phrases are the object of the expected answer. If the user's answer to the 

clarifying question is "yes" it will be processed like an answer, else, if the 

answer is "no" the phrase will be processed normally regarding its type and 

content. In the last case, the asked question will be assumed as left without an 

answer. 

2) The program phrase is a narration. Any type of phrase type may come from 

the user and it will be treated according to its type. 

3) The program phrase is imperative. Here reaction on the following user's 

phrase depends on what has been asked. It the imperative assumes an action 

like to tell some information to the system it is equal to a question. If it suggests 

the user perform some action in the real world it is probably advisable, which 

might be given as a reaction to the previous phrases. In this case, there should 

not be any influence on the following user's phrase perception. 

This type of dialogue system could also be staffed with a decision tree-like it 

was described above for the third (questionnaire) type. So the user's answers to 

the system's questions become bifurcation criteria that determine the following 

phrases the system gives to the user. 

The last described dialogue system type is useful more for intersegment but it 

also could perform the functions of any one of these types. Moreover, the ability 

both to ask and answer the questions could make the working with the dialogue 

system more user's friendly and less bearing. Also, it allows the program to 

obtain information from the user in an unobtrusive matter. 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

264 

Conclusions 

Considered the types of natural language dialogue systems depending on the 

involvement and roles of the user and the conversation program: reference 

system, where all the initiative belongs to the user, who merely asking the 

system questions; reference system, where the system can ask the user 

technical and clarification questions; questionnaire system that is aimed rather 

address questions to the user than answer them; active initiative system which 

assumes narrative, interrogative and imperative phrases both from the user and 

the system sides; natural language control system. 

Were analyzed two types of ontology used in our dialogue systems: simpler 

one, where categorized concepts combined into intersections are bound to the 

corresponding references on ready answer texts and more semantically 

structured, where concepts are represented by rather multiword terms bind to 

answers, definitions, comments and with each other by a wide range of 

semantic meaningful predicates. The second type is considered usage of 

standard OWL and RDF/XML or Neo4j data structures with arbitrary predicates 

approaches. It was shown that the method used for RDF/XML or Neo4j data 

structures with arbitrary predicates leads to simplification of the ontology formal 

structure and could simplify queries with the same purpose compared with 

standard OWL predicates usage only. However, for the first, simpler, type 

standard OWL is rather useful and convenient. The advantage of the first 

ontology type is its simplicity, ability to create atomization, universality for 

different languages and subject areas, and no need for deep semantic analysis. 

The advantage of the second ontology type is semantically precision and the 

potential probability of more certain and relevant answers obtained. 

A tree-based semantic analysis method is proposed for the determination of the 

semantic type of the input user's phrase. The method assumes that the frame is 

shifting through the words list of the phrase considering on each step one or 

several words. These words are analyzed to match one of the conditions on the 

current tree position. The most matching condition determines the following 

position on the next level of the tree. The process proceeds until there will 

remain only one or might be several, but ranked semantic types. The semantic 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

265 

type determines the corresponding appropriate formal query template. The 

concepts substituted into the template are to be taken from the defined parts of 

the initial considered words list considered on the certain tree positions, which 

depend on both the tree way and the chosen template. 

A method was proposed for derivation from the sets of words obtained from the 

initial phrase to ones stored in the nodes of the graph database. It can both 

reduce and expand the context to the most appropriate one. The essence of the 

technique is the following. There is a set of all the terms from the ontology with 

the corresponding lists of lemmatized words and their parts of speech. The 

word set is compared with the words of these concepts. Both additional and 

missing words are taken into account. To estimate the similarity degree of the 

input words set and one from the file is used a specific metric, which gives 

different scores to matching, additional and missed words depending on their 

part of speech. That concept is to be selected for which the score will be the 

highest. Obtained in such manner terms are used to be substituted into the 

query template. The method is useful for ontology with long multiword terms. 

An approach of preliminary queries ranking is considered. In the final node of 

the decision tree for the semantic type, determinations could be given several 

possible ones each of them corresponding to a certain query template. The 

essence is that those types are given in their possible relevance hierarchy. So if 

the previous one becomes unable to obtain any result it probably could be 

obtained by the following one, however, perhaps less adequate. 

Considered in this work is the problem of the dialogue context keeping for 

different types of dialogue systems. It was shown that the most crucial this issue 

is for active initiative system type. To its solution is proposed the following 

approach. There should be both long-term and short-term contexts keeping 

procedures. The long-term one is aimed at giving preference to the ontology 

used when dealing with previous dialogue acts. If there is only a narrow 

subjected ontology in the system, this problem solves itself. If there are several 

different ontologies, following the last used one is needed for the program 

initiatives only, and the general dialogue subject should be able to be changed 

by the user's will. The short-term context keeping is the most actual after the 

dialogue act when the system asks the user a question or generates an 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

266 

imperative phrase with the meaning of the question. If after that from the user 

comes a phrase of interrogative or imperative type and its type is incoming 

direction, out coming direction, separation, unification, an object of action, 

purpose, reason, meaning, estimation, topic or object of characteristic (for 

question) or pointing, address, incoming direction, out coming direction, 

separation, unification, substitution, instrumental, object of action, purpose, 

meaning, topic, object of characteristic (for an imperative phrase), the system 

should ask the user a clarifying question, whether this phrase the answer or the 

user merely has ignored to answer, but asking for something. The following 

activity of the system should depend on the user's answer to this query. For 

other cases, users' questions and imperative phrases are to be treated just as 

questions or imperative phrases without any clarifying. Also, short-term context 

keeping includes pronouns substitution. Possible ambiguities are also should be 

resolved by asking clarifying questions or by having an additional ontology 

where possible actions and characteristics of the concepts are stored. 

Acknowledgements 

This paper and the research behind it would not have been possible without the 

financial support of the National research foundation of Ukraine under the 

contract № 159/01/0245 from 07.05.2021, project title: "Transdisciplinary 

intelligent information and analytical system for the rehabilitation processes 

support in a pandemic (TISP)". 

References 

[Algorithmia, 2021] Algorithmia: Developer centre. Available 

from: https://algorithmia.com/developers/clients/python. 

[Aylein, 2021] Aylein: NLP-enriched News Intelligence Platform. Available 

from: https://aylien.com/product/news-api?redirect=portal. 

[Stsvrianou et al, 2007] A. Stsvrianou, P. Andritsos, N. Nicoloyannis. Overview 

and semantic issues of text mining. SIGMOID Record. Vol. 36, No. 3. 2007. 

pp. 23 – 34. 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

267 

[Rajman et al, 1999] M. Rajman, R. Besancon. Stochastic distributional models 

for textual information retrieval. Proc. of 9th ASMDA. Lisbon, Portugal. 1999. 

pp. 80 – 85. 

[Nenadic and Ananiadou, 2006] G. Nenadic, S. Ananiadou. Mining semantically 

related terms from biomedical literature. ACM TALIP Special issue on text 

mining and management in biomedicine. Vol. 5, No. 1. 2006. pp. 22 – 43. 

[Caropreso at al, 2001] M. F. Caropreso, S. Matwin, F. Sebastiani. A leaner-

independent evaluation of the usefulness of statistical phrases for automated 

text categorization. Text databases and document management: theory and 

practice. Hershy, PA. 2001. pp. 78 – 102. 

[Kehagias et al, 2001] A. Kehagias, V. Petridis, V. G. Kaburlasos, P. Fragkou. A 

cooperation of word- and sense-based text categorization using several 

classification algorithms. Journal of intelligent information systems. Vol. 21, 

No. 3. 2001. pp. 227 – 247. 

[Carenini and Zwart, 2005] G. Carenini, E. Zwart. Extracting knowledge from 

evaluative text. 3rd KCAP. Alberta, Canada. 2005. pp. 11 – 18. 

[Antonellis and Gallopoulos, 2006] I. Antonellis, E. Gallopoulos. Exploring term-

document matrices from matrix in text mining. Proc. of the SIAM Text mining 

workshop. Maryland. 2006. 

[Yang and Liu, 1999] Y. Yang, X. Liu. A re-examination of text categorization 

methods. Proc. of SIGIR. Berkeley, CA. 1999. pp. 42 – 49. 

[Dumais et al, 1998] S. Dumais, J. Platt, D. Heckerman, M. Sahami. Inductive 

learning algorithms and representations for text categorization. Proc. of the 

7th CIKM. Bethesda. 1998. pp. 148 – 155. 

[Sebastiani, 2002] F. Sebastiani. Machine learning in automated text 

categorization. ACM Computing Surveys. Vol. 43, No. 1. 2002. pp. 1 – 47. 

[Jindal and Bing, 2006] N. Jindal, L. Bing. Identifying comparative sentences in 

text documents. Proc. of 29th SIGIR. Seattle, USA. 2006. pp. 244 – 251. 

[Hatzivassiloglou and Mckeown, 1997] V. Hatzivassiloglou, K. R. Mckeown. 

Predicting the semantic orientation of adjectives. Proc. of the 35th ACL and 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

268 

8th Conference of the European chapter of ACL. Nee Brunswick, NJ. 1997. 

pp. 174 – 181. 

[Shaik et al, 2016] S. Shaik, P. Kanakam, S.M. Hussain, D. Suryanarayana 

Transforming natural language query to SPARQL for semantic information 

retrieval. International Journal of Engineering Trends and Technology. No. 7. 

2016. pp. 347–350. DOI: 10.14445/22315381/IJETT-V41P263. 

[Ochieng, 2020] P. Ochieng PAROT: Translating natural language to SPARQL. 

Expert Systems with Applications. No. 5. 2020. pp. 1–16. DOI: 

10.1016/j.eswa.2021.114712. 

[Yin et al, 2021] X. Yin, D. Gromann, S. Rudolph. Neural machine translation 

from natural language to SPARQL. Future Generation Computer Systems. 

Vol. 117. 2021. pp. 510–519. DOI: 10.1016/j.future.2020.12.013. 

[Damljanovic et al, 2011] D. Damljanovic, M. Agatonovic, H. Cunningham. 

FREyA: an interactive way of querying linked data using natural language. 

The Semantic Web: ESWC 2011 Workshops. 2011. pp. 125–138. DOI: 

10.1007/978-3-642-25953-1_11. 

[Sun, 2018] C. Sun. A Natural Language Interface for Querying Graph 

Databases: master’s thesis in computer science and engineering. USA: 

Massachusetts Institute of Technology, 2018. 

[CypherConverter] GIT-hub Convert English sentences to Cypher queries 

documentation. Available from: https://github.com/gsssrao/english2cypher 

[Litvin et al, 2020] A. A. Litvin, V. Yu. Velychko, V. V. Kaverynskyi. Method of 

information obtaining from ontology on the basis of a natural language 

phrase analysis. Problems in programming. No. 2-3. 2020. pp. 322 – 330. 

DOI: 10.15407/pp2020.02-03.322 

[Sudakov and Malyokin, 2012] B. N. Sudakov. A.S. Malenkin. Metody sinteza 

estestvenno-yazykovykh tekstov v ekspertnykh sistemakh. Vestnik NTU 

«KhPI». (In Russian). 



International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

269 

[Bolshakova, 2014] I. E. Bolshakova. Yazyk leksiko-sintaksicheskikh shablonov 

LSPL: opyt ispolzovaniya i puti razvitiya. Programmnyye sistemy i 

instrumenty: Tematicheskiy sbornik. Vol. 15. 2014. pp. 15 – 26. (In Russian). 

[Tarasov, 2015] Д. Тарасов. Chatbot на нейронных сетях. (In Russian). 

Available from: https://habr.com/ru/company/meanotek/blog/256987/ 

[Levin, 2016] I. Levin. Chto mozhet i chego ne mozhet neyroset. (In Russian). 

Available from: https://habr.com/ru/company/neurodatalab/blog/335238/ 

[Kuki] Kuki - Chat with me. Available from: https://chat.kuki.ai. 

[AIML] AIML Artificial Intelligence Markup Language. Available from: 

http://www.aiml.foundation/doc.html 

 [Gomez-Perez et al, 2002] A. Gomez-Perez, J. Angele, M. Fernandez-Lopez, 

V. Christophides, A. Stutt. A survey on ontology tools. Onto wed deliverable. 

Vol. 1. 2002. 

[Antoniou, 2016] G. Antoniou. Semantic web. Moscow: DKM-Press, 2016. 

[Goel, 2015] A. Goel. Neo4j Cookbook. Birmingham, 2015. 

[DBEngines, 2021] DB-Engines ranking of graph DBMS. 2021. Available from: 

https://db-engines.com/en/ranking/graph+dbms. 

[Litvin, 2020] A. A. Litvin, V. Yu. Velychko, V. V. Kaverinsky. Synthesis of chat-

bot responses in the inflecting natural language based on the results of 

queries to ontology and analysis of the chat previous phrase. Information 

theories and applications. Vol. 27, No. 2. 2020. pp. 152 – 199. 

[Litvin et al, 2021] A. A. Litvin, V. Yu. Velychko, V. V. Kaverynskyi. Tree-based 

semantic analysis method for natural language phrase to formal query 

conversion. Radio Electronics, Computer Science, Control, 2021, No. 2, pp. 

105–113. https://doi.org/10.15588/1607-3274-2021-2-11. 

 

 

 

https://habr.com/ru/company/meanotek/blog/256987/
https://habr.com/ru/company/neurodatalab/blog/335238/
https://doi.org/10.15588/1607-3274-2021-2-11


International Journal “Information Theories and Applications”, Vol. 28, Number 3, © 2021 

 

270 

Authors' Information 

 

Anna Litvin – V. M. Glushkov Institute of Cybernetics NAS of 

Ukraine; graduate student. Glushkova Avenue 40, Kyiv, 

Ukraine, 03187; e-mail: litvin_any@ukr.net 

The main directions of scientific research: natural language 

processing for analysis and synthesis of text in inflected 

languages, intelligent systems, microservices, chat-bots 

 

Vitalii Velychko – V. M. Glushkov institute of Cybernetics NAS 

of Ukraine; PhD, Senior Researcher. Glushkova avenue 40, 

Kiev, Ukraine, 03187; e-mail: aduisukr@gmail.com 

The main directions of scientific research: computer ontologies 

and their use in the educational process; information-oriented 

information systems with processing of natural language 

objects: ontological approach 

 

Vladislav Kaverinsky – Institute of Materials Science, NAS of 

Ukraine; Candidate of Technical Sciences. Senior Researcher, 

ul. Krzhizhanovsky 3, Kyiv, Ukraine; e-mail: 

insamhlaithe@gmail.com 

The main areas of scientific research: theory and mathematical 

modelling of phase and structural transformation processes, 

the evolution of the distribution function of dispersed systems, 

modification of cast metal, natural language processing for 

analysis, and synthesis of text in natural languages. 

 
  

mailto:litvin_any@ukr.net
mailto:aduisukr@gmail.com
mailto:insamhlaithe@gmail.com



