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AN ALGORITHM FOR FRESNEL DIFFRACTION COMPUTING 
BASED ON FRACTIONAL FOURIER TRANSFORM 

Georgi Stoilov 

Abstract: The fractional Fourier transform (FrFT) is used for the solution of the diffraction integral in optics. A 
scanning approach is proposed for finding the optimal FrFT order. In this way, the process of diffraction 
computing is speeded up. The basic algorithm and the intermediate results at each stage are demonstrated. 
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Introduction 
The analysis of a great number of optical systems and devices requires diffraction computing under various 
conditions. This task can be solved through the implementation of modern methods of optical and digital image 
processing. Precise computing of the diffraction pattern obtained by illuminating complex transmitting objects or 
reflecting surfaces is a problem requiring huge computing resources. Thus, the necessity becomes obvious of 
introducing fast computing algorithms and of reducing the computational volume by simplifying the solution of the 
wave equation [1] 
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where c – speed of light,  υ - a scalar quantity, describing the wave in an arbitrary point in space, s(x,y,z,t) – a 
known function of the irradiating surface. 
 

 
Fig.1.  Irradiating and recording surface 

 

In some cases the irradiating and the recording surface (Fig.1) can be presented as parallel planes. Most of the 
used approximations are based on the solution of Eq.(1) using Kirchhoff’s integral [2]: 
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where P(x) – surface irradiation function S; r - radius-vector; λ - wavelength. At that, the solution is simplified by 
using different assumptions. For the sake of simplicity, we consider the solution in the one-dimensional case. The 
most inaccurate approximation of the diffraction integral, used in optics, is replacing it with its Fourier-transform 
(FT) [2]. 

( ) ( ) ( )dxexP
r

XA Xxik

s

−∫≈
1   (3) 

The necessary condition for applying this approach is that the irradiating object aperture and the size of the 
diffraction pattern be much smaller than the distance between them. What is normally considered in optical 
systems is light diffraction in vacuum or light transmission through spherical optical elements (lenses) whose 
implementation introduces a quadratic phase multiplier in Kirchhoff’s integral. In order to solve that form of the 
diffraction integral, FrFT introduced by Victor Namias in 1980 is successfully used [3]. It has different definitions 
that are proven to be equivalent and are used depending on the field of application. One of the definitions is: 
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where a is the fractional Fourier-transform order and 
2
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The strict (accurate) proof and the conditions for its use in various optical diffraction problems is elaborated by 
Ozaktas, Zalevsky and Kutay [4]. The diffraction integral for the optical lens system and the propagation of the 
wave throgh vacuum is described in the following way: 
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where )(ˆ Xg  is the complex amplitude of the wave field in the plane of diffraction at a distance d, ),(ˆ Xxhlens  is 

the nucleus ised in the case of using thin lenses with a focal distance f and ),(ˆ Xxhspace  is the wave propagation 
in vacuum. 
Like FT, FrFT can be presented in the form of a sum instead of in the form of an integral. The main reason for 
that transition to discreet functions instead of continuous functions is the possibility of implementing computer 
processing of the digital images. FrTT can be represented by several sequential operations one of which is FT 
[4,6]. The natural elaboration of the approach is to seek fast computational algorithms analogous to fast Fourier-
transform (FFT). An algorithm and software for fast transform of the authors referred to earlier are used for the 
computation of FrFT. 

Problem 
In a number of cases the condition for the implementation of FrFT cannot be fulfilled because of the large 
aperture of the object compared to the distance at which the diffracted wave is recorded. There is no analytical 
solution of the integral in that case. It is known that in the far field the diffracted wave function can be described 
by FT. The function behaviour in its intermediate states in the transition of the function to its Fourier form is 
represented by FrFT. Under such conditions, the solution of Kirchhoff’s integral can be carried out by FrFT and 
find the FrFT order at which the best approximation is achieved. 
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Computing algorithm 
In the image a line is selected that passes through some complex area, i.e. the line consists of elements of 
different and, if possible, large amplitude. Thus, the approximation will have a more distinct maximum with the 
change in the approximation parameter. For this value of the approximation parameter, Kirchhoff’s integral is 
calculated, taking into account Eq.(2) and fast FrFT (FFrFT) (6). The aim is to find the best coincidence of the two 
solutions by changing the FrFT order. Using the parameter of the selected line found in this way, the FrFT for the 
whole image is calculated. 
The control of the approximation can be carried out by selecting several lines and columns for which the 
parameter is calculated and its average value is obtained. 
Another version of the algorithm is based on calculation of the Kirchhoff’s integral followd by reverse transform of 
the obtained data by means of FrFT. In that case, the reconstructed and the original image can be compared 
more easily because, normally, there is no complex component, and in the reconstructed image the complex 
component is present only as a result of inaccurate approximation and calculation. 

Results 
In order to verify the algorithm, a simple object was chosen – a ring, (Fig. 2) with a constant value of the 
illuminated areas and a zero background. For the sake of simplicity, only the behaviour of the horizontal 
component of the diffraction was analysed. In this way, the changes in the image at the periphery of the 
illuminated zones are seen more clearly. A square aperture sized 102.4 μm was chosen and the discretisation 
step was 100 nm.  
 

 
Fig. 2. Original test image 

 
Fig. 3. Diffraction pattern in the Fresnel zone 

 

The calculation of Kirchhoff’s integral in the Fresnel zone was carried out at a distance of 10 nm. A wavelength of 
533 nm was chosen (Fig.3). 
 

   
Fig. 4. Reverse transform of the lines -0.2,  -0.3 and  -0.34  FrFT 

 

The reverse calculation is accomplished by seeking a solution by FrFT. The results at different values of the FrFT 
order are shown in Fig.4. 
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When the function is known, the optimisation criterion can be sought as the smallest mean square error of the 
difference between the original and reconstructed image. If the original is unknown and only the amplitude 
response is varied and the phase is kept constant, the approach of minimisation of the imaginary component of 
the reconstructed image can be applied. This is the case of a parallel laser beam passing through an amplitude 
mask. 
 

 
Fig. 5. Histogram of the image values  

for various FrFT orders 

 
Fig. 6. Maximum in the histogram  

depending on the FrFT order 
 

In the object that we selected, the amplitude has just two values: 1 and 0.  Thus, the clarity of the white part of the 
image can be used as a criterion for successful reconstruction. Fig.5 displays a histogram of the values for some 
FrFT orders. In real measurements, the calculation of FrFT and the normalization of the data suppress the real 
value of the amplitude. If there is a solution close to the target, the values will be grouped in two areas: around 0 
and around the amplitude. When normalization is 
accomplished after FrFT, the amplitude value is slightly 
below 1. The values close to zero are not shown since we are 
looking for a maximum close to 1. 
The search for a solution of the problem begins by successive 
changes in the FrFT order in the range from -1 to 0. The 
solution is an order at which the highest maximum in the 
histograms in Fig.5 is achieved. Because of the periodicity of 
the function for searching the global maximum, scanning is 
possible only in the given range. The calculation of the FrFT 
order with an accuracy of 0.01 makes possible the 
implementation of fast converging algorithms, for example, the 
method of division of the range in two. 
It is seen that the maximum appears at a FrFT order of around 
0.34 (exact value 0.3419). The reconstructed image at this value is shown in Fig.7. Scaling of the image is not 
taken into consideration in the calculation process. When the parameter takes different values, the size of the 
image varies. The effect exhibits itself as an image deformation in horizontal direction, since the calculations are 
made in that direction. 

Software 
A software program is developed in two parts. The programming language is Microsoft Visual C for MS 
WINDOWS. The first part of the program computes Kirchhoff’s integral by the rectangular method. Due to the 
oscillating nature of the curves, the integration error is slightly higher than in the case of trapezoidal formula or 
other approximations of higher order. The computational process is based on a two-kernel processor Atlon 64 
4400+ and operating system Windows XP. Processing of an array of 256х256 pixels takes 16 minutes, 
processing of an array 512х512 – 8 hours, and 1024х1024 – 120 hours.  

 

 
Fig. 7. Reconstructed image 
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The second module of the program takes care of the FrFT and of its order optimization. Computation of FrFT of 
an image of 1024х1024 pixels takes 1 minute. In the optimization process, FFrFT is used just for one line 
containing 1024 pixels. In this case, scanning for optimization purposes in the range from -1 to 0 with a step of 
0.01 takes three seconds.  

Conclusions 
An algorithm is proposed for calculation of light diffraction in the Fresnel zone by finding the most suitable value 
of the FrFT order in one cross-section and its subsequent use for computing the whole image. Results are shown 
from test image processing for each stage of the algorithm. For the sake of obtaining the best visualization 
processing is carried out only along one axis. 
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Abstract: In the present paper the results from designing of device, which is a part of the automated information 
system for counting, reporting and documenting the quantity of produced bottles in a factory for glass processing 
are presented. The block diagram of the device is given. The introduced system can be applied in other discrete 
productions for counting of the quantity of bottled production.   
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Introduction 
In all discrete productions it is needed the ready production to be counted as well as reporting and documenting 
of the received data. In the present paper a device for counting the quantity of the produced glass bottles, moving 
on conveyor belt and which is designed by the authors is presented. It is a part of the automated information 
system for reporting and documenting of the ready production in a factory for glass processing [Draganov, 2006]. 
The information system has to meet following requirements: collecting data for the ready production, moving in 
one direction on the conveyor belts; archiving the data for each shift; reporting the quantity of the production for a 
shift (eight hours).  


