
International Journal "Information Technologies and Knowledge" Vol.1 / 2007

369

ADAPTATION OF A TASK-ORIENTED TRAINING ENVIRONMENT TO ITS USERS

Irina Zheliazkova, Georgi Georgiev, Rumen Kolev

Abstract: The problem of adapting teaching systems to the teacher has not been extensively covered in the
specialised literature. The authors present the server-client architecture of a Task-Oriented Environment for
Design of Virtual Labs (TOEDVL). The paper focuses on the computational models supporting its base of tasks
(BT) and on two groups of behavioural tutor’s models for planning training sessions. Detailed examples are
presented.

Keywords: task, training, search, sort, adaptation, models

ACM Classification Keywords: J.1 Computer Applications, Administrative Data Processing, Education

1. Introduction
Adaptation of the teaching system to the learner's current level of domain competence, the teaching materials
and the context of presenting the information is not a new idea. The learner model ensuring this adaptation was
one of the main components of Intelligent Tutoring Systems, developed two decades ago. Different kinds of
learner models have been exhaustively considered by Zheliazkova & Kolev, 2004 in [1]. For the first time
adaptation to another user – the teacher was considered by Peachey & McCalla, 1986. In [2] they determined the
short-term individual learner’s plan as a sequence of so called teaching operators and propose to use first order
predicates for its execution. The system EXTERN (Paschin and Mitin, 1985 [3]) also uses dynamic planning,
where the duration of the teaching session and the sequence of teaching blocks are not initially defined. As a
criterion for choosing the next block, the different implementations usually use one or more of the following: the
volume or relative change of acquired knowledge, the time for learning, the learning speed, etc. Only in recent
years the problem of adaptation of the teaching environments to their users is being seriously considered by
Jesshope at al., [4]. The arguments for this are that individual teachers use different strategies for planning the
courseware presentation, level of didactic knowledge, types of assessment, scales for evaluation, rules for
diagnostic of the learners' knowledge as well as ways for intervention in the learning process.
From the above discussion it follows that the training systems have to be adaptive to the author, tutor, and
learner. Although intelligent, some of the well known training systems from the last two decades (Gonzalez &
Ingraham, 1994 [5]; Chu et al., 1995 [6]; Vasandani & Govindaraj, 1995 [7]) don’t meet this requirement. The
algorithm for applying the system RIDES for course development focuses on adapting the training to its author
(Fleming, 1996 [8]).

2. Architecture of a TOEDVL
Figure1 presents the architecture of a TOEDVL. In this figure the following notations are used: double arrows
represent data links; single solid lines – control links; dashed lines – HTML documents transported from server to
client; dash-dot-dot lines – binary data transferred between client and server. The architecture is domain and
task-independent due mainly to the language for knowledge description in the training tasks. It is supposed that
the user’s registration/access control will be handled by a separate module administrator, also that the learner
has already acquired deep structural knowledge about the simulated system by means of a similar environment
for design of structural schemes [9]. The teaching material ensuring the feed-back to the learner is prepared by
means of standard tools and files e.g. help editor (.chm), graphical editor (.gif, .jpg, .png), audio (.wav), and video
(.avi) editors. For presenting tests to the learner, two approaches can be used. Tests can be generated and
interpreted by means of specialised tools (the Test editor in Figure 1 and a test interpreter, integrated with the
Program interpreter) [10]. Alternatively, they can be in HTML format, prepared by means of HTML content
generator, such as Dreamweaver. In this case the Test interpreter (not shown in Figure 1) interprets them.
A generated program representing the user’s knowledge about a given training task is extracted through visual
programming by means of the program generator. It stores the syntactically and semantically correct program in a
standard text file with an extension .trn. The task manager implements planning and execution of the sequence of

International Journal "Information Technologies and Knowledge" Vol.1 / 2007

370

training tasks in a session (file with an extension .ses). This sequence is viewed as a short-term plan for the
individual learners. Task execution itself is ensured by means of another tool – the program interpreter, which
runs the simulation programs and saves the simulation results in a file with the extension .hst.

Figure 1. Architecture of TOEDVL

During the execution, the necessary operator’s skills in the form of keyboard/mouse activities are added to the
declarative and procedural knowledge. The computed or registered task and session parameters are stored in the
base of tasks (BT), kept in a database (.db). Each task is run on the same tool once by the tutor and once by
each learner. After the author completes a task and his/her .trn file is returned to the server, the tool updates the
BT. After the learner completes a task and his/her temporal .trn file is returned to the server, the tool updates the
learner’s model, kept in the same database (.db). The post-processor is another specialized tool, whose purpose
is to implement different standard procedures for representation and processing the simulation results. A sample
list of such procedures includes the following: (1) graphical representation of a functional dependency; (2) tabular
representation of such a dependency; (3) graphical representation of a family of dependencies in a common co-
ordinate system; (4) evaluation of the type and duration of a transient process; (5) evaluation of the model
adequacy; (6) presentation of a test question; (7) comparison of the trainee’s actions with those of the author.
Standard text files (.dat) are used to store the values of the traced parameters, measured in the real systems.
After a given learner’s session finishes the learner’s session parameters, such as knowledge volume, duration,
speed of learning, and so on are accumulated in the database as statistical experimental data, for the needs of an
integrated system for individual planned teaching [11].

Local copy of data and knowledge base

binary data HTML

PHP enabled
Web server

Browser

Data and knowledge base

Standard tools
Graphical

editor
Video
editor

Audio
editor

Test
editor

Text
editor

HTML
editor

Help
editor

Specialised tools

Program
generator

Postprocessor Task manager Program
interpreter

Client

Server

INTERNET

Program
i t t

gif

gif .jpg avi wav chm qst

.jpg .avi wav qst trn db hst dat chm html

International Journal "Information Technologies and Knowledge" Vol.1 / 2007

371

3. Language for Knowledge Description of Training Tasks

Although the tasks in a real lab vary greatly depending on thfe physical nature of the real objects they can be
classified as (1) calculation tasks for a given set of output parameters, (2) monitoring tasks for dynamic mode of
the system, (3) investigative tasks for static mode of the system, (4) drawing tasks for the transient process in the
system, (5) drawing tasks for a set of functional dependencies, (6) optimisation tasks for choosing the most
appropriate system according to some criteria, (7) control tasks to cope with abnormal situations, and (8)
diagnostic tasks to identify failed system components.

Table 1. The common structure of programs
<session_description>::=SESSION
ORGANIZATION <string>
DEPARMENT <string>
TEACHER <string>
COURSE <string>
TOPIC <string>
GOAL <free text>
DURATION <integer>
VOLUME <integer>
DIFICULTY <real>
 [<directives_list>]
[<criteria_description>]
{<task_list>}
ENDS
<directives_list>::=
ESCAPE | NOESCAPE
PRINT | NOPRINT
SAVE | NOSAVE
EDIT | NOEDIT
DO | REDO
ASSESS | NOASSESS
<criteria_description>::=
TYPE SUCCESS|
FAILURE|
PERCENTAGE|
SCALE
CORRECTION <real>
MARK <string>
2-FROM: <integer1>TO:<integer2>
3-FROM: <integer1>TO:<integer2>
4-FROM: <integer1>TO:<integer2>
5-FROM: <integer1>TO:<integer2>
6-FROM: <integer1>TO:<integer2>
END

<task_description> ::= SYSTEM [<string>]
 FILENAME <string>
 DESCRIPTION <memo>
 DURATION <integer>
 VOLUME <integer>
 PROMPT <real>
 DIFICULTY <real>
 {<parameter description>}
 {<dependence description>}
 [COLOURS <integer><integer>]
 [DISCR_STEP = <real>]
 [{<event description>}]
 [TRACE <list of parameters >END]
 [SPEED = <integer>]
 [TIMER @|<integer><integer><integer>]
 [{<procedural operator >}]
 [{<operation >}]
END
< parameter description > ::= VAR <string>
 [X= <integer>]
 [Y= <integer>]
 [WIDTH <integer>]
 [COLOURS_ON]
 [INVISIBLE]
 [UNITS <integer>]
 [VALUE = <real>]
 [STEP = <real>]
 [LIMITS <real> | @ : <real> | @]
 [NORMAL <real> | @ : <real> | @]
END
<dependence description> ::= DEPENDS <string>=<expression>
<event description > ::= IF < expression > THEN {<action1>} ELSE {<action2> }
END

We called the special purpose language developed for task knowledge description SystemScript. It can be
classified as internal visual very high-level mark-up language. In Table 1 a common structure of the generated
training session’s program and task’s subprograms is presented using the Backus-Naur notation. Here the
keywords of the language are in capital bold letters and the special symbols have the meaning of: ::= defines a
syntactical construction; _ connects the words in a syntactical construction name; | divides the alternative
constructions; { } enclose a construction, which can be repeated; [] enclose a construction which is not
mandatory; < > enclose the name of a syntactical construction, which is not yet defined. In addition to
administrative data, parameters of the session and the sequence of the training tasks, the program in
SystemScript includes six global key directives. They are meant to allow the tutor to intervene during the learner’s

International Journal "Information Technologies and Knowledge" Vol.1 / 2007

372

performance. Their meanings allow or disallow the learner to: redo the task performance (DO|REDO); give up
task performance (ESCAPE| NOESCAPE); printing the .trn file (PRINT|NOPRINT); saving this file
(SAVE|NOSAVE), editing the file (EDIT|NOEDIT), assessing the learner’s performance (ASSESS|NOASSESS).
When assessment is allowed, an additional block for criteria description is added to the tutor’s program. The tutor
can choose between four types of the learner’s assessment, e.g. SUCCESS/FAILURE, PERCENTAGE, MARK or
PROXIMITY. In the last case the intervals of the traditional mark scale have to be pointed out. In such a way the
adaptation of the environment to tutor’s preferences are ensured.
In a task’s subprogram three kinds of knowledge are embedded, namely: declarative, procedural, and
operational. Declarative knowledge is represented in the form of parameter, functional, and conditional blocks.
Procedural knowledge can be seen as a sequence of procedural operators for performing a given task in a
standard manner after declarative knowledge comparison. The example list of operators includes: (a) graphical
representation of a functional dependence, (b) tabular representation of a functional dependence, (c) graphical
representation of a set of functional dependencies on a common co-ordinate system, (d) evaluation of the
character and duration of transient processes, (e) evaluation of model validity. A multiple-choice question could
be presented to test whether the learner observing the results of the procedural operator has made the right
conclusion. Operational skills reflect the way of using declarative and procedural knowledge in order to cope with
abnormal situations in pseudo-real time. An author’s program for an investigative, control or diagnostic task
requires specific learner’s actions during its interpretation. Some of the other language constructions serve for
flexible control of the simulation process. More detailed information about the language syntax and semantics for
task knowledge description can be found in [12].

Table 2. A Sample BT
id kw k q p d t

Task1 simulation, static state, working characteristics, DC motor 2 197 0,36 0,50 9
Task2 examining, transient process, DC motor, DC generator 1 201 0,54 0,50 9

Task3 optimisation, criterion, choose, DC machine, internal parameters,
characteristics 5 230 0,47 0,50 9

Task4 exploring, dependencies, effect, external parameters, rotational
frequency, relation 3 198 0,36 0,50 9

Task5 monitoring, control, pseudo real time, maintain, rotational frequency 4 236 0,60 0,50 9
 Training session parameters (K, Q, P, D, T): 0.62 1062 0.47 0.50 45

4. Supporting the Base of Tasks

For each task in the training session the BT includes the following parameters: identifier (ID), set of keywords
(kw), kind (k), knowledge volume (q), degree of prompt (p), degree of difficulty (d) as well as the time expected for
its completion (t). The analogical parameters of the training session are denoted with corresponding upper letters.
For better illustration of the models proposed in this and next section, Table 2 presents a sample BT concerning
the well-known system of a DC motor, DC generator and a mechanical connection between them. Some of the
parameters have constant values calculated in accordance with the presented formulae, and others have
statistical values with initial values shown.
Let Z be the maximal number of the different kinds of tasks, y(j) be equal to 1, if the jth kind of task is present in
the training session, and to 0, if it is absent. Then the degree of training session variety can be computed as

∑
=

=
z

j

ZiyK
1

/))((. The concept of program tree and the correspondences between its terms and the graph terms

was introduced by the authors in [6]. The task performing by the author or learner is viewed as filling in the
program tree nodes with keywords, data types, and attributes’ values (names, numbers, and text). The numbers
of the nodes V(i) and links U(i) of the tree can serve as a precise and sensitive measure of knowledge volume
within the text nodes dimensions, i.e. q(i)=|V(i)|+|U(i)|≈2|V(i)|.

International Journal "Information Technologies and Knowledge" Vol.1 / 2007

373

Let s(i) be the number of elements included in the construction SYSTEM, n(I,j) – the number of elements included
in the jth VAR construction, oi – the total number of operators in the j-th IF-THEN-ELSE construction. If N(i) is the
number of parameters, M(i) – the number of the elements, k(I,m) – the number of terminals of element m, Q(i) –
the number of connections, L(i) – the number of traced parameters, P(i) – the number of functional dependencies,
R(i) – the number of conditional operators, I(I,r) – the number of operators in the THEN-part of the rth IF-THEN-
ELSE operator, j(I,r) – the number of operators in the ELSE-part of the r-th IF-THEN-ELSE operator. The nodes to
the left of an S, V, E, C or T node contain information associated with the subject domain, while the nodes to the
right represent the keywords of the attributes associated with the same construction. Then,

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+++++

+++++

=

∑∑

∑

=−

=

)(

1

)(

1

)(

1

),()(3)()()(6),(7

)(18),(2)(2)(22
2)(

iR

i

iM

ij

iN

j

jioiRiPiLiQjit

iMjiniNis
iq

Having N tasks planned for the training session, the total volume of acquired knowledge would be ∑
=

=
N

i
iqQ

1
)(. Let

PT1(i) and PT2(i) be respectively the author and learner’s program tree. Let a(I,j) be the number of nodes missing
in PT1(i) but present in PT2(i), b(I,j) – the number of nodes present in PT1(i) but missing in PT2(i). The following
formula c(I,j) = (q(i) – a(I,j) – b(I,j)) / q(i) can serve as a precise and sensitive measure of the degree of proximity
between the performance of Ith task by the jth learner and that of the author. This parameter also varies between 0
and 1. The formula c(I,j)*=c(I,j).(∆t1/∆t2) that takes into account the learner’s time for task performance ∆t2
relative to the author’s ∆t1 presents time correction of c(I,j). So by means of the environment parameter e, where
(∆t1/e)≤∆t2≤e∆t1, the learner who is faster than the author could be encouraged while the slower one could be
reprimanded. The calculated parameter and the registered time for performance stored in the learner’s .trn
program present the main part of the third-level learner’s model [5].The degree of environment prompt determines
what part of the author’s knowledge is available to the learner when he/she is performing the task. As it is
assumed that the domain names are fixed by the author and the keywords by the environment

)(

)(3),(4)(9),()()(1
)(

)(

1

)(

1

iq

iQjitiMjiniNis
ip

iM

j

iN

i
∑∑
==

++++++
=

Now if M is the number of trainees who attempted to solve the Ith task, the formula for the calculation of the task
difficulty becomes precise and simple: Mjicid

M

j
/),()(

1
∑
=

= . The degree of difficulty of the session is calculated

as the average, i.e. NidD
N

i
/))((

1
∑
=

= , where N is the number of tasks included in the session. Initially d(i) = 0.5,

for every task, consequently D=0.5. In practice, the expected completion time for a task is calculated as the
average, i.e. 2/)(iii ttt +=

−−
after each task execution by a learner. Similarly, the average time for completing the

session is calculated as 2/)(ТТT +=
−− after each session completes. Having an initial session duration set by the

tutor as T, the initial values of t(i) are taken to be the same and equal to T/N.

5. Planning of the Training Session

5.1. Search-based Models

Dominant model: This model is used to exclude the least appropriate tasks having extreme values. For
example, given the criterion (q=max) AND (p=max), task 5 in Table 2 will be excluded.
Restrictive model: Used for reducing the set of tasks to a subset by imposing limits on certain parameters. For
example, given the criterion (p>0,5) AND (q>200) tasks 2 and 5 will be selected.
Keywords: This model uses the kw field as a limiting factor. When more than one keyword is given, a logical
AND is performed on them. The criterion for example, must be (kw=”characteristics” AND “DC”), which will yield
tasks 1 and 3.

International Journal "Information Technologies and Knowledge" Vol.1 / 2007

374

Logical formula: This is a more general model than the preceding one, as it allows a combination of AND, OR,
NOT operations as well as brackets. For example, in order to find all tasks, containing the terms “characteristics”
but not containing “DC”, the criterion will be (kw=”characteristics” AND NOT “DC”), which will yield task 4.

5.2. Sort-based models

Significance model: The criteria are sorted by significance and the tasks are compared with the most significant
one. The task, which outclasses the rest according to the first criterion, is selected. If more than one task has the
same value, the next in significance criterion is used and so on. For example, having the following order of
criteria: 1) d=max; 2) p=min; 3) q=max, task 4 in Table 2 will be selected, but only after applying the third criterion.
Weighted model: Depending on the parameters’ significance, each is assigned a weight. Then selection is
based on the following formula: ∑

=

=
n

i
kipkwiА

1
),().()(, where: A(i) – rating of the Ith task; w(k) – weight of the kth

parameter; p(I,k) – quantitative evaluation of the Ith task for the kth parameter; n – the number of evaluated
parameters. Supposing for a certain tutor can assign t a weight of 5, the weight of p can be 10, while those of q
0,01. Then the formula for the weighted sum of the Ith task becomes: Ai = 5*ti + 10*Cpi + 0,01*Qi, (I=1..5). In
accordance with the calculated values of Ai , the tasks in the BT are ordered thus: 1, 4, 2, 3, 5.
Ideal model: Based on the idea that it is not mandatory that the significance of each parameter will grow as its
quantitative evaluation. Generally, the selection criterion is: |),(),(|).()(

0

kivkipkwiD
n

i

−= ∑
=

, where the additional

notations used are: Di – degree of tutor’s dissatisfaction with the Ith task; v(I,k)– the ideal value of the Ith task for
the kth parameter. The lower the value of Di, the higher the evaluation of the Ith task. If it turns out that all
parameters match their ideal values, then |p(I,k)-v(I,k)|=0, and consequently Di=0. For example, keeping weights
from the previous example and ideal values for a given T of t=5 and p=0, the tasks will be ordered thus:
3, 2, 5, 4, 1.

6. The Current State of the TOEDVL

Only a part of the above-described ideas have been implemented in the current prototype of the TOEDVL. The
program generator is designed to run locally as a standalone WINDOWS application. Due to the need of
portability and independency of the quality of the network connection status, the interpreter is implemented by
means of ActiveX controls. Currently, we are in
the process of implementing the Task Manager
that allows easily switching between different
sets of keywords, i.e. using different spoken
languages.
A learner’s session starts by opening a Web
page; in this way the learner contacts the Task
manager. After authorization, the learner is
presented with the sequence of tasks planned in
the .ses file. The program interpreter, if not
present at the client computer, is downloaded
from the server. As it starts interpreting the
current .trn program, it downloads any additional
files, needed for running the current task on the
learner’s computer. The monitored values of
control points appear in the corresponding
windows of scheme’s bitmap (Figure 2). During
execution they are refreshed depending on the
model and user interactions. A simulator’s clock in the toolbar indicates the elapsed time from the beginning of
the simulation. The interpreter-evaluator periodically updates the learner’s history file on the server. This file
keeps track of all parameter changes, whether due to changes in the status of the modelled lab object, or to
trainee’s interactions with the model.

Figure 2. The main window of the program interpreter

International Journal "Information Technologies and Knowledge" Vol.1 / 2007

375

The prototype of the TOEDVL has been used in the course of Intelligent Teaching Environments for design of two
virtual labs in electrical systems and electronic circuits. The accumulated experience indicates that the proposed
environment leads to deep understanding of the teaching material and stimulates learners’ motivation and activity
in their practical exercises.

7. Conclusion
The problem of adapting a task-oriented training environment to different type of users, (e.g. authors, tutors, and
learners) has been discussed. The models for computation of task and session parameters are proposed to
support the base of tasks by the authors. Finally, two groups of the tutor’s models based respectively on search
and sort in the base of tasks are considered. Comparative analysis of the learner and author’s program trees
produces objective and precise evaluation of the learner’s knowledge, taking into account the missing/redundant
elements/connections as well as the task completion time.

8. Acknowledgements
The authors wish to thank the reviewer, Prof. Douglas Harms from DePauw University, Indiana, USA for his
careful reading of the paper and critical comments and suggestions for its improvement.

Bibliography
[1] I.I. Zheliazkova, R.T. Kolev, Learner Models in the Computer-Based Teaching Systems. A survey, Bulgarian Journal of

Information Technologies and Control, 4, 2004, 22-28.
[2] D.R. Peachey, G.I. McCalla, Using planning techniques in intelligent tutoring systems, International Journal of Man-

Machine Studies, 24, 1986, 77-98.
[3] E.H. Paschin, A.I. Mitin, Automated Teaching System EKSTERN (MSU, Moscow, 1985, in Russian).
[4] C. Jesshope, E.Heinrich, D-r Kinshuk, Technology integrated learning environments for education at distance,

http://www.deanz.org.nz/jeessope.doc
[5] A.J. Gonzalez, L.R. Ingraham, Automated exercise progression in simulation-based training, International Journal

System, Man, and Cybernetics,24, 1994, 862-874.
[6] R.W. Chu, G.M. Mitchell, & P.M. Jones, Using the Operator Function Model and OFMspert as the basis of an intelligent

tutoring system: towards a tutor/aid paradigm for operators of supervisory control systems, Int.J. System, Man, and
Cybernetics, 25, 1995, 1054-1075.

[7] V. Vasandani, T. Govindaraj, Knowledge organisation in intelligent tutoring systems for diagnostic problem solving in
complex dynamic domains, Int. J. Systems, Man, and Cybernetics, 25, 1995, 1076-1096.

[8] J. Fleming, The Intelligent Computer-Assisted Training Testbeds (ICATT) Program, 1996,
https://www.spider.hpc.navy.mil/html-docs/its-ida/armstrong.htm.

[9] I.I. Zheliazkova, P.L. Valkova, Computer-Aided Teaching and Learning Structural Schemes, Annual Proceedings of the
Rousse University, section “Mathematics, Informatics and Physics”, Rousse, Bulgaria, 2004 (accepted).

[10] I.I. Zheliazkova, R.T. Kolev, Technology of Using an Intelligent Multimedia Test Generator, Proceedings of the 15th
Annual European Conference on Innovation in Education for Electrical and Information Engineering, Sofia, Bulgaria,
2004, 49-58.

[11] I.I. Zheliazkova, R.T. Kolev, A Three-Level Learner’s Model for the Needs of an Integrated Environment for Individual
Planned Teaching, Proceedings of the International Conference on Computer Systems and Technologies (e-Learning),
Rousse, Bulgaria, 2004, IV.13-1- IV.13-6.

[12] I.I. Zheliazkova, G.T. Georgiev, Representation and processing of domain knowledge for simulation-based training
systems, International Journal of Intelligent Systems, 2000, 10(3), 255-277.

Author's Information
Irina I. Zheliazkova - Dept. of Computer Systems and Technologies, Rousse University, Studentska Str.8,
Rousse, Bulgaria; e-mail: irina@ecs.ru.acad.bg
Georgi T. Georgiev - Dept. of Computer Systems and Technologies, Rousse University, Studentska Str.8,
Rousse, Bulgaria; e-mail: gtgeorgiev@ecs.ru.acad.bg
Rumen T. Kolev - Dept. of Computer Systems and Technologies, Rousse University, Studentska Str.8, Rousse,
Bulgaria; e-mail: rkolev@ecs.ru.acad.bg

