
International Journal "Information Technologies and Knowledge" Vol.2 / 2008 
 

 

35

A CIRCUIT IMPLEMENTING MASSIVE PARALLELISM IN TRANSITION P SYSTEMS 

Santiago Alonso, Luis Fernández, Fernando Arroyo, Javier Gil 
Abstract: Transition P-systems are based on biological membranes and try to emulate cell behavior and its 
evolution due to the presence of chemical elements. These systems perform computation through transition 
between two consecutive configurations, which consist in a m-tuple of multisets present at any moment in the 
existing m regions of the system. Transition between two configurations is performed by using evolution rules 
also present in each region.  

Among main Transition P-systems characteristics are massive parallelism and non determinism. This work is part 
of a very large project and tries to determine the design of a hardware circuit that can improve remarkably the 
process involved in the evolution of a membrane. Process in biological cells has two different levels of 
parallelism: the first one, obviously, is the evolution of each cell inside the whole set, and the second one is the 
application of the rules inside one membrane. This paper presents an evolution of the work done previously and 
includes an improvement that uses massive parallelism to do transition between two states. To achieve this, the 
initial set of rules is transformed into a new set that consists in all their possible combinations, and each of them 
is treated like a new rule (participant antecedents are added to generate a new multiset), converting an unique 
rule application in a way of parallelism in the means that several rules are applied at the same time. In this paper, 
we present a circuit that is able to process this kind of rules and to decode the result, taking advantage of all the 
potential that hardware has to implement P Systems versus previously proposed sequential solutions. 
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Introduction 
Transition P-systems or Membrane Computing (designed by [Păun, 1998]) are based on the processes that occur 
among living cells. The idea behind it is the fact that a living cell may change its state depending on the set of 
elements that are present in it and, of course, depending on the chemical rules that can transform them. Based 
on this, we can create a computational model based on that behavior. So, there is a definition of a cellular 
structure that contains elements that can be repeated, conforming multisets, and rules that define how multisets 
are combined to reach cell evolution. One of these structures (membranes) may contain another ones, 
conforming a hierarchical relation whose components may communicate among them, always based on what the 
rules allow. Evolution due to a rule application may cause that a membrane passes information to the one 
immediately superior in the hierarchy or to any of the ones that are in a level immediately inferior. All this, besides 
the fact that eventually, a membrane may be inhibited or dissolved by means of some rule application, and that 
they may have different priorities, does P-systems very interesting in order to define their hardware 
implementation. 
All these processes can be viewed as computational ones and P systems have been sufficiently characterized 
from a theoretical point of view and their computational power has been settled. However, nowadays, the way in 
which these models have to be implemented is still a problem not solved. This problem is having two different 
approaches: software and hardware models. There are many papers about software tools implementing different 
P system variants [Gutierrez-Naranjo, 2006], but in the case of P-systems hardware implementation, only a few 
references can be found: connectivity arrays for membrane processors [Arroyo, 2004], multisets and evolution 
rules representation in membrane processors [Arroyo, 2004b] or a hardware membrane system description using 
VHDL [Petreska, 2003]. However, in [Martinez, 2006a] and [Martinez, 2006b] there is a hardware approach that 
implements a circuit that covers the whole process that takes place inside a membrane. Authors describe the way 
a sequential circuit may control the application of active rules in a Transition P –system and its internal structure. 
Being aware that P-systems are defined as "distributed, massively parallel and non deterministic", we think these 
characteristics should be strengthen. Parallelism takes place in this model in two different levels: the first one is 
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due to the fact that every cell or membrane evolutions at the same time than the others, and the second one is 
due to the fact that rules inside each membrane may be applied at the same time. 
It is at this point where this work pretends to be positioned: parallelism by means of application of multiple rule at 
the same time. 
The structure of this paper presents, first, the problem and its methodological solution and afterwards, shows its 
data model and a general representation of the circuit, as well as each part in detail. 

The algorithm 
As we may read in [Martinez, 2006a] and [Martinez, 2006b], a hardware approach to P-system is possible. These 
papers show how the general algorithm of an evolution system may be developed with a circuit. Authors clearly 
improved  the basic algorithm by the way of the proposal of obtaining the number that represents the maximum 
times each rule could be applied to the current multiset. This number, called applicability MAX, is the higher limit 
for a random number that indicates how many times the rule will be applied, modifying the basic algorithm as: 
Let R be the initial set of active rules, R = {R1, R2, …, Rn } and W the initial multiset, being input(Ri) the 
antecedents  for rule Ri 

1. R InitialActiveRules 
2. REPEAT 
3.        Ri  Aleatory (R) 
4.        MAX  Applicability (Ri, W) 
5.        IF MAX = 0 
6.        THEN   R  R  - {Ri} 
7.        ELSE  
8.                K  Aleatory(1, MAX) 
9.                W  W – K * input(Ri) 
10.                count(K, Ri) 
11. UNTIL |R| = 0 

As we can see, the algorithm works by selecting randomly one rule until there are no rules to apply (|R| = 0). 
Once the rule is selected, it calculates its MAX value; if this value is zero, it means that the rule is no more 
applicable and it has to be removed from the set of rules.  
Afterwards, it generates a random number K, equal or less than MAX and the application of the rule consists in 
subtracting K times the antecedents input(Ri) from W. This means that such rule is being K times used. Of course 
we have to store this value so we can check how many times a rule has been applied (step 10). 
So, this algorithm is implementing some way of parallelism (in each iteration, a rule is applied K times). However, 
the importance of parallelism in this kind of model, as well as its possible importance in the field of NP problem 
solving, urged us to find a way to be able to apply several rules at the same time, improving its throughput (after 
all, the exposed algorithm just calculates MAX for one rule). Thus, the idea is to find a way to select several rules 
and apply them over the multiset in each evolution step. We could see that this could be achieved in a better way, 
improving its computational throughput just by considering the initial set of rules as a new set composed by the 
rules that result form calculating the power set P(R)  from the original set of rules. So if we have: 
R = {R1, R2, …, Rn }  
its power set is: 
P(R) = {∅, R1, R2, …, Rn, R1 R2, …, R1 Rn,,…, Rn-1 Rn, …,  R1R2 … Rn-1 Rn } 
As {∅} is an element with no rules and it has no meaning for this work, the power set minus the empty set will be 
considered: 
P'(R) = P(R) - {∅} = { R1, R2, …, Rn, R1 R2, …, R1 Rn,,…, Rn-1 Rn, …,  R1R2 … Rn-1 Rn }  
If we consider now this set P'(R) as the initial active rules set, what we are doing is to be able to apply several 
rules at the same time, by the meaning that if a rule R'∈P'(R) / R' = Rx…RyRz is chosen, a possible evolution may 
process the antecedents of several rules (Rx…RyRz ) at the same time (as many as conform the chosen element). 
The algorithm, right now would be: 
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Let R be the initial set of active rules, R = {R1, R2, …, Rn } and W the initial multiset, being input(Ri) the 
antecedents for rule Ri  
Let P(R) be the power set of R  and P'(R) = P(R) - {∅} with card( P(R)) = 2n and card(P'(R) = 2n -1) ) 

1. REPEAT 
2.       ∀ Ri ∈ P'(R), || MAXi  Applicability (Ri, W) 
3.       ∀ Ri ∈ P'(R), || Ki  Aleatory(1, MAXi) 
4.        COBEGIN 
5.               ∀ Ri ∈ P'(R),  || WT  Ki * input(Ri) 
6.               END   ¬ ∃ Ki <>0; IF NOT END 
7.                                                THEN BEGIN 
8.             Rj  Aleatory (P'(R)) / Ki <>0 
9.                          COBEGIN 
10.                           W  W – WT 
11.                           count (Ki, Rj, R)     
12.                COEND 
13.      END 
14.        COEND 
15.   UNTIL END  

As we may see, this algorithm underlines the importance of parallelism, taking advantage from the processes that 
can be done simultaneously. As we will see ahead, there are two types of parallelism: first, some processes are 
applied to all the rules at the same time (indicated by the sign "||" in steps 2, 3 and 5) and second, some control 
processes may be done simultaneously (indicated by the clauses "COBEGIN … COEND"). 
Moreover, differences with the previous algorithm include (steps 2 and 3) calculating applicability MAX and a 
random number (Ki, between 1 and its MAX value) for each of the rules that are included in P'(R). As they should 
be calculated simultaneously, process time is not incremented.  Once this is done, it calculates the product of 
each Ki by the antecedents of each rule, but, at the same time this is happening, there is a special process (steps 
6 through 8) that selects a random rule but just for the rules whose MAX value is different than zero (this means 
that Ki is also different than zero). This causes that any selected rule is applicable and only in the case that no 
rule has MAX value greater than zero, the END condition is reached. 
Once the rule is selected, of course the system has to subtract the antecedents (WT) from the set of elements (W) 
but, again at the same time, it has to decode the participant rules, because not all the rules that are in P'(R) 
appear also in R. A rule could be the result from the composition of several rules from R and so, the process has 
to increase the counter for each of the rules from R.  

The model and data representation 
Before we can start with the circuit design, there is the need for a definition of a data structure that contains 
information about the initial membrane state, the initial multiset of objects and the set of evolution rules. 
Continuing with the work done in precedent papers, and knowing that we have to establish some limits for a 
suitable circuit, the model should: 
a. Limit the cardinality O = {a, b, c, d, e, f, g, h, i, j} of the alphabet to 10. 
b. Define the initial multiset involved in a specific membrane i, Wi, that will be represented by a 4-bits register. 

The length of this register will be 10. The value in each register position will represent the number of 
occurrences for the object represented by the alphabet letter in that position. 

c. The finite set of evolution rules R associated to the membrane i is represented by a set of registers, each of 
ones represents the antecedents of rule i, and the value in each position represents the element occurrences 
needed for the current rule to be applied. 

d. The Application Rules Register is represented by a register which length is, at least, log2n, being n = 
card(P(R)) 

In this work we have to consider two main aspects:  
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a. First, the initial set of rules is 
considered to be the power set of 
active rules at the beginning of the 
process. The circuit to obtain active 
rules from the initial multiset may 
be obtained from [Martinez, 
2006a].  

b. Shown solution will be scalable, so, 
increasing number of initial rules 
will not have a negative influence 
in the design (if card(R)=n, then 
card( P(R) ) = 2n and card(P'(R) = 
2n -1) ). In this paper we will work 
with examples with a set of three 
initial rules, that makes card (P’(R)) 
= 7. 

The circuit shown in figure 1 takes the 
set of rules, already P’(R) members 
(Initial Active Rules), and the initial 
multiset of objects and brings out a 
complete register (Application Rules 
Register) with the occurrences each 
rule should be applied to obtain a step 
of evolution. 

The circuit 
The circuit is the result for assembling different functional units created each one to do a specific job. All of them 
should be coordinated by a “Logic Control Unit” not represented in figure 2, that takes the control and repeats the 
whole cycle until the signal provided by the Application Selector F.U. indicates that are no more active rules. 
The different units are: 
Applicability MAX F.U.: This functional unit is the one that receives an active rule and determines its Aplicability 
Max value, as explained before. This value is calculated as the largest number of times current rule can be 
applied without having in mind the other rules. So, this functional unit needs, as input, the antecedents of current 
rule and the multiset of objects. The output will be the MAX value for current rule.  
The Max value may be obtained [Martinez, 2006a] by dividing each position value from the register for 
antecedents by its corresponding position value in the multiset register. Once obtained all this results, the 
smallest one will be the maximum value the rule may be applied. 
Random generator 1..MAX: once the Applicability Max is obtained, the circuit should generate randomly a value 
for each of the available rules in the active rules register. This value represents the number that each rule should 
be applied in case that specific rule is chosen to be the one that consumes the elements and its lowest value will 
be 1 and the highest will be Maxi.  
It is very important to realize that Max value could be zero, due to the fact that a rule could not be applied 
because there are no enough elements in the multiset. In another type of circuit, this would cause the rule to be 
invalid for the process and that could be a problem. In this case, this is solved by the Application Selector F.U. 
where a k not equal to zero is selected.  
If n is the cardinality of P'(R), all this calculation (n times a random number between 1 and Maxi) may be done at 
the same time, forcing the higher parallelism.  

 
 

Figure 1. Circuit inputs and outputs 
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Figure 2: Circuit functional units 

 

Application Selector F.U.: Once the previous random generator has calculated ki for each rule, we can find that 
any of these numbers may be zero (due to the fact that its Application Max value may be equal to zero). We have 
to implement a way of avoiding to choose a rule with ki equal to zero because it would cause a delay time in 
process dedicated, probably, to recalculate a new ki. To avoid this kind of problems, we developed a functional 
unit that can generate a random number but just for those rules which k is greater than zero.  
Achieving the developing of this functional unit included developing of one special cell that obtains the position of 
the first "1" appearing in the register, and another cell to get the position of the second "1", and another for the 
third, and so on. We will have as many cells as number of rules in P'(R). As result of this, we will get together all 
the positions that have a value for ki different from zero. 
As we can see in figure 3, to do this, first we need to transform k values, that can be greater than one, to another 
values (1 or 0) representing that ki has a value greater than zero or not. This can be done with a comparator. 
Thus, there is a need to have a specific circuit to detect the first “1” in the register, that would be the position of 
the first rule that has a non zero value. In figure 3 we can see that there is a comparator that sets the position of 
the value “1” by deactivating the logical gates after it finds the value. Comparison with values 1 to 7 brings us the 
value of the position for the first rule that has a non zero value for the random number k. There has to be another 
specific circuit to detect the value for the second rule, the third, etc. Of course, these circuits are similar to the one 
shown but they ignore the registers behind the position they are looking for. 
If we call each of these circuits A, B, C, D…, all of them should be added as we can see in figure 4, in such a way 
that the first values are all different from zero. Now, all we have to do is to generate a random value no greater 
than the position of the last number greater than zero. To achieve this, we just have to add the number of values 
different from zero that are stored in the register and use it as the input for the random generator. The output will 
be a number between 1 and the number of values different from zero. If we use it as the index for the multiplexer, 
we will obtain always a value indicating the position of a rule which random k is different from zero and so, we are 
sure the rule is applicable and active. 
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Figure 3: Detecting first rule with ki > 0 

 

 
Figure 4: End signal and output for random generator ki <> 0 
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Of course, if no k value is different from zero, the addition would result in a zero value, which, once compared 
with “0”, results in the "END" signal for all the circuit because it means that no more rules are applicable. 
Rule decoder: As we can see in figure 1, once a rule is chosen by the Application Selector F.U., we need to 
perform two different processes: the first one is to calculate the occurrences of elements used to be able to 
decrement them from the multiset of objects. But there is still another problem: we should be able to register in 
the Application Rules Register the number of times each rule was applied. This means that if the rule applied i 
was one that belonged to P’(R) but was not in R (possible due to the way we conformed P’(R)), we have to 
“decode” that rule to the set of rules that conformed R. Circuit in figure 5 shows how it can be done. 
The first set of comparators select the rule indicated by the functional unit “Application Selector”. As we just have 
seen, the value for the selected rule, ki, can not be zero. Once we this value, we have to separate the 
components that conform it.  
So, in the example with 3 rules for R ({ R1, R2, R3}) and 7 rules in P’(R): 
P’(R) = { R1, R2, R3, R1 R2, R1R3, R2R3, R1R2R3}  
If rule 1 is selected, the circuit will add only the k value for this rule (gate at the left), but if rule 7 is selected, then 
it will add the k value for rules R1, R2 and R3 because rule 7 is R1R2R3 and all of them were applied k times. 
 

 

Figure 5: Rule decoder 

Whenever the Application Selector F.U. enables de END signal the "Rules Application Register" will contain the 
final result, that is, the number of times each rule has to be applied to go forward with a transition. This number is 
referring the initial set of rules R.  
Other functional units: Of course, there are more functional units that are in charge of calculating the final 
amount of elements that the circuit used during each step of evolution. There is a unit that is dedicated to 
calculate, for each rule, the result of multiplying k (random number generated by the first generator) by each 
input(Ri) (elements in the antecedent of each rule). Of course this can be done for all the rules at the same time 
and it just needs a multiplier per rule.  
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The second one is just a multiplexer in charge of receiving the rule number (j) selected by the Application 
Selector F.U. and to select, according with it, the product kj * input(Rj). 

Once this is done, we need just to decrement the product selected before from the global multiset, and this is the 
job for the last functional unit, storing its result in the Multiset Register of Objects to allow a new selection of a rule 
and let whole process go again. 

Conclusion 
Nowadays there are several projects trying to conform different types of circuits to implement membrane 
computational model with hardware, obtaining active rules and forcing the system to evolution and obtain the 
number of rules applied. This paper presents how to improve this kind of circuits by emphasizing the massive 
parallel character P-systems have.  
The circuit provides the number of times each rule should be applied to do a complete transition between two 
configurations, according to its initial set of rules and initial multiset of objects. Of course, different applications 
over the same sets, do not have to produce the same result. 
Hardware implementation is based on basic components like registers, counters, multiplexers, logical gates and 
so on. The development of the system can be done using hardware-software architectures like VHDL and 
physical implementation may be accomplished on hardware programmable devices like FPGA's. 
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