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GENERAL REGRESSION NEURO–FUZZY NETWORK 
FOR IDENTIFICATION OF NONSTATIONARY PLANTS 

Yevgeniy Bodyanskiy, Nataliya Teslenko 
Abstract: General Regression Neuro-Fuzzy Network, which combines the properties of conventional General 
Regression Neural Network and Adaptive Network-based Fuzzy Inference System is proposed in this work. This 
network relates to so-called “memory-based networks”, which is adjusted by one-pass learning algorithm. 
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ACM Classification Keywords: F.1 Computation by abstract devices - Self-modifying machines (e.g., neural 
networks), I.2.6 Learning - Connectionism and neural nets, G.1.2. Approximation – Nonlinear approximation.  

Introduction 
Nowadays neural networks have wide spreading for identification, prediction and nonlinear objects control 
problems solving. Neural networks possess universal approximating abilities and capabilities for learning by the 
data that characterize the functioning of investigating systems. The situation becomes sharply complicated in the 
case, when the data are fed in real time, their processing must be simultaneous with functioning of the plant, and 
the plant is nonstationary. It’s clear, that conventional multilayer perceptron, that is universal approximator, isn’t 
effective in this case, so Radial Basis Functions Networks (RBFN) can be used as its alternative [1-3]. These 
networks are also universal approximators, and their output is linearly dependent on tuned synaptic weights. In 
this case, recurrent least squares method or its modifications can be used for their real time learning. These 
procedures are second-order optimization algorithms, which provide quadratic convergence to the optimal 
solution. At the same time, practical application of RBFN is bounded by so-called curse of dimensionality as well 
as appearance of “gaps” in the space of radial-basis functions (RBF) that lead to appearance of regions where all 
neurons of the network are inactive. 
So-called, space partition of unity, implemented by Normalized Radial Basis Functions Networks (NRBFN), in 
which output signal is normalized by the sum of outputs of all neurons, is used to avoid such a “gaps” [4]. Given 
networks are learned using recurrent gradient algorithms that have slow rate of convergence and possibility of 
getting to the local minima as their common drawback. 
Thus, these neural networks and many others that use recurrent learning procedures and united by general name 
“optimization-based networks” may be inefficient in problems of adaptive identification, prediction and real-time 
control, when the information is fed for processing with sufficiently high frequency. In this case, these networks 
have not time to learn and are unable to follow changing parameters of a plant. 
The so-called “memory-based networks” are the effective alternative to “optimization-based networks” and 
General Regression Neural Network (GRNN), proposed by D. F Specht [5], is the brightest representative of 
these networks.  
At the basis of this network lies the idea of Parzen windows [6], kernel estimates of Nadaraya-Watson [7-9] and 
nonparametric models [10]. Its learning consists of one-time adjustment of multidimensional radial-basis functions 
(RBF) at points of unit centered hypercube, which are specified unambiguously by the learning set. Therefore, 
these networks can be referred to, so-called, just-in-time models [4], which are adjusted by one-pass learning 
algorithm. Being similar to NRBFN by the architecture, GRNN learns much faster, placing the centers of RBF at 
the points with coordinates that are determined by input signals of a plant using principle “neurons at the data 
points” [11] and with RBF heights, which coincide with corresponding values of plant output signal. High learning 
rate of GRNN provides their effective using in the real-time problems solving [12,13]. 
For the solving of nonlinear plant identification problem 

y(k) = F(x(k))  
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where y(k), x(k)– scalar and (nx1)-vector of output and input signals correspondingly in the instant time k=1,2,…, 
F(•)  – unknown nonlinear operator of the plant, it is necessary to form learning sample { }* *x (k), y (k) , k=1,2,…,l, 

whereupon it is possible to get the estimate )y(k) of the plant response y(k) to arbitrary input signal x in the form 
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where D(k) – distance measure in accepted metrics between x and x*(k), ϕ(•)  – some kernel function, usually, 
Gaussian. Conventionally the Euclidean metrics is used as a distance  
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(here σ(k)  – scalar parameter, which determines the receptive field radius of kernel function ϕ(•) ), although in 
more common case it is possible to use Minkowski metrics 
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Thus, GRNN converges asymptotically to optimal nonlinear regression surface with the growing of learning 
sample size [9]. 
GRNN learning process can be organized easily in real time. In this case the learning pairs x*(k), y*(k) are fed to 
the network sequentially, forming new radial-basis function-neurons. At the same time, the distance between 
newly formed and already existing functions is estimated gradually. If this distance is smaller than threshold value 
r, that is defined in advance, new neuron isn’t included in the network. The main problems concerned with GRNN 
using are defined by possible curse of dimensionality. Growing of the learning sample size l and the difficulties 
with correct definition of parameter r, which is sufficiently difficult to choose and interpret in multidimensional 
space, are the causes of it. 
Neuro-Fuzzy Systems (NFS) are the natural expansion of artificial neural networks [14-15]. They combine the 
neural networks learning abilities with transparence and interpretability of the Fuzzy Inference Systems (FIS). 
Generally, FIS represents fuzzy models, which are learned by observations data of plant inputs and outputs, 
using univariate Fuzzy Basis Functions (FBF) instead of multidimensional RBF. In common case FBF are bell-
shaped (usually Gaussian) membership functions, which are used in Fuzzy Logic. Using of bell-shaped FBF 
allows us to combine local features of the kernel functions with the properties of sigmoidal activation functions 
that provide global approximation properties [16]. Having the approximating abilities of RBFN [15], NFS subject to 
curse of dimensionality with less degree, that provides them advantage in comparison with neural networks. 
Among Neuro-Fuzzy Systems (NFS) Adaptive Network-based Fuzzy Inference System (ANFIS) have got wide 
spread [17]. ANFIS has five-layer architecture, whose synaptic weights are tuned similarly to RBFN. The 
adjusting possibility of FBFs using error back-propagation algorithm is provided in this system too. ANFIS and 
many other similar neuro-fuzzy systems [4,15,16] are typical representatives of the optimization-based networks 
family, which are characterized by insufficient learning rate. 
Lattice-based Associative Memory Networks (LAMN) [18, 19] are the representatives of memory-based networks, 
whose output signal is formed on basis of univariate bell-shaped functions uniformly distributed on axes of n-
dimensional input space. As a result of aggregation operation multidimensional FBFs are formed, whose centers 
are also uniformly distributed in multidimensional space, and their layout doesn’t depend on characteristics of 
learning sample. 
The goal of this work is the development of General Regression Neuro-Fuzzy Network (GRNFN), which 
represents by itself NFS and learns as GRNN that provides it approximating properties of ANFIS with learning 
rate of memory-based networks. 



International Journal "Information Technologies and Knowledge" Vol.2 / 2008 
 

 

138

The General Regression Neuro-Fuzzy Network architecture  
The architecture of General Regression Neuro-Fuzzy Network is illustrated on Fig. 1 and consists of five 
sequentially connected layers. First hidden layer is composed of l blocks with n FBF in each and realizes 
fuzzification of the input variables vector. Second hidden layer implements aggregation of membership levels that 
are computed in first layer, and consists of l multiplication blocks. Third hidden layer – the layer of synaptic 
weights that are defined in special way. Fourth layer is formed by two summation units and computes the sums of 
output signals from the second and third layers. Finally, normalization takes place in fifth (output) layer, as a 
result of which, the output network signal is computed.  
One can see, that the architecture of GRNFN coincides with the architecture of L.-X. Wang–-J.M. Mendel neuro-
fuzzy system [20], which, in turn, is the modification of zero-order T. Takagi–M. Sugeno fuzzy inference system 
[21]. However, if NFS is learned using one or another optimization procedures, GRNFN is adjusted using one-
pass learning algorithm. 
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Fig.1 – General Regression Neuro-Fuzzy Network. 

 

The General Regression Neuro-Fuzzy Network learning  
Since GRNFN belongs to memory-based networks, its learning is based on principle “neurons at data points” that 
makes it extremely easy and fast. 
Learning sample vectors * * *x (1),...,x (k),...,x (l)  are normalized in advance on unit centered hypercube so, that 

≤ ≤*min * *max
i i ix x (k) x , i =1,2,...,n , 

≤ ≤%*
i-0,5 x (k) 0,5 . 

Mutual recalculation is made according to the next expressions 

%
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* i i
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x (k) - x
x (k) = - 0,5

x - x
, 

%* * *max *min *min
i i i i ix (k) = (x (k) + 0,5)(x - x ) + x . 

For each vector from the learning sample % % % %* * * * Τ
1 2 nx (k) = (x (k), x (k), ..., x (k))  in the first hidden layer own set of  

fuzzy-basis membership functions % % %* * *
1 2 nx (k) x (k) x (k)μ ,μ , ...,μ  is formed, so that centers of %*

ix (k)μ  coincide with %*
ix (k) , 
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k=1,2,…,l. The process of FBF formation is illustrated on Fig. 2. Note that GRNFN contains nl fuzzy-basis 
functions, that can’t lead to the curse of dimensionality. 
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Fig.2 – Fuzzy-basis membership functions. 

 

Theoretically, any kernel function with non-strictly local support can be used as FBF. It allows avoiding of 
appearance of “gaps” [9]. As such a function one can recommend generalized Gaussian  
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that is the bell-shaped function, whose shape is defined by the scalar parameter b [15]. Let’s also note, that b 
defines the metrics 2bD (k)  too. As for choosing of the width parameter iσ (k) , standard recommendation leads to 
the idea [8], that it must ensures small overlapping of neighboring FBFs. Easy to see, that for Gaussian this 
recommendation leads to estimate  

i
l - 1σ (k) <

2 ÷ 3
. 

At the same time with FBFs forming in first hidden layer, the synaptic weights are being tuned in the third hidden 
layer and they are supposed to be equal to the signals of learning sample *y (k) . 
Thus, when arbitrary signal %x  is fed to the input of GRNFN in the first hidden layer membership levels %

%*
i ix (k)μ (x ) , 

i=1,2,…,n, k=1,2,…,l are computed, in the second layer their aggregation is made by forming multidimensional 
FBFs 
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in the third layer products ϕ)
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ky(x) = y (k) (x)  are determined, fourth layer computes the values of signals 

ϕ∑ %
l

*
k

k=1
y (k) (x)  and ϕ∑ %

l

k
k=1

(x) , and, finally, in the output layer the estimate 

ϕ

ϕ

∑∑ ∏

∑ ∑∏

%

%

%%
)
%

% %

*
i

*
i

nll
**

ik x (k)
k=1k=1 i=1

l nl

k ix (k)
k=1 k=1 i=1

y (k) μ (x )y (k) (x)
y(x) = =

(x) μ (x )
, 

is forming, which coincides with (1) with the only difference, that instead of radial-basis functions multidimensional 
fuzzy-basis functions are used, that were formed of univariate FBF. 
The scheme of fuzzy inference, which is realized by GRNFN can be presented as a logic equations system 
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)
% % % % *
1 1 2 2 n n 1IF(x .IS.A (1)).AND.(x .IS.A (1)).AND.....AND.(x .IS.A (1)), THEN y (x) = y (1)  
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where the operator iA (k)  is represented by the membership function (2). Hence, using of neuro-fuzzy approach 
allows ensuring of obtained results interpretation. 
The GRNFN learning process can proceed both in batch mode, when learning sample { }* *x (k),y (k)  is specified 

apriori and in real time, when pairs x*(k), y*(k) are given sequentially, forming multidimensional FBFs ϕk . It is 
sufficiently easy to organize the exclusion process of slight information pairs. If for some observation %*x (m)  next 
condition is held 

 %min -1
i ii

max D (x (m)) < r < (l -1)      (3) 

(here %min
i iD (x (m))  – the least distance between %ix (m)  and earlier formed neighboring centers of FBFs), then 

%*x (m)  doesn’t form function ϕm  and is removed from the consideration. Note, that for univariate situation the 
threshold parameter r and the distance max

iD  are significantly easier to define, then in multidimensional case of 
GRNN. 
Operation of GRNFN can be organized simply in the continuous adaptation mode that is essentially important for 
nonstationary objects identification and control. Here it is possible to use two approaches. The first is – on the 
sliding window of l observations, when while learning pairs x*(l+1), y*(l+1) are being fed to the input of the 
network, in the first and third layers the pair of %*

ix (1)μ  and y*(1) is removed, and instead of it the membership 

function %*
ix (l+1)μ  and weight y*(l+1) are formed. The second approach is based on inequality (3). In this case 

newly received pair x*(m), y*(m) isn’t removed, but replaces the nearest to it in the “old” data. 
As far as the learning process operates almost immediately, there is no problem with following properties of 
tuning algorithm at all. 

Numerical experiment 
In this experiment, the plant is assumed to be of the form [22]: 

y(k +1) = f(y(k),y(k -1),y(k - 2),u(k),u(k -1)) , 
where the unknown function f has the form 

1 2 3 5 3 4
1 2 3 4 5 2 2

2 3

x x x x (x -1) + xf(x ,x ,x ,x ,x ) =
1 + x + x

. 

The input to the plant is given by u(k) = sin(2πk/250)  for ≤k 500  and u(k) = 0.8sin(2πk/250) + 0.2sin(2πk/25)  for 
k > 500 , in all 1000 signals. Fig.3(a) shows the output of the plant. 

 
Fig. 3.a) Outputs of the plant. Fig. 3. b) Outputs of the GRNFN (dash-dot line) and GRNN 

(dashed line) practically coincide. 
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Two experiments were made. In the first experiment, GRNFN was constructed and learned by first 500 signals, 
which organized learning sample. After that, the next 500 signals were fed to the network for testing its 
performance. In addition, this problem was solved using conventional GRNN. The results are shown in Fig.3(b) 
for last 500 instants. One can see that output signals of GRNFN and GRNN practically agree with test signals and 
with each other, but numerical analysis shows that GRNFN has accuracy higher by 2%. In the second experiment 
the distances between all learning signals were computed and compared with threshold value. Only 378 of 500 
signals exceeded preassigned threshold value, and they organized learning sample. In this case, GRNFN has the 
same accuracy. Hence, it is logically to conclude that GRNFN needs less number of signals to be learned in 
comparison with GRNN.  

Conclusions 
General Regression Neuro-Fuzzy Network, that is generalization of conventional GRNN and adaptive fuzzy 
inference systems, is proposed in this work. Network is characterized by computational simplicity, interpretability 
of the results and ensures high accuracy in the nonlinear nonstationary systems prediction and identification 
problems.  
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SMART PORTABLE FLUOROMETER FOR EXPRESS-DIAGNOSTICS  
OF PHOTOSYNTHESIS: PRINCIPLES OF OPERATION  

AND RESULTS OF EXPERIMENTAL RESEARCHES 

Volodymyr Romanov, Volodimyr Sherer, Igor Galelyuka, Yevgeniya Sarakhan, 
Oleksandra Skrypnyk 

Abstract: In the Institute of Cybernetics of National Academy of Sciences of Ukraine the smart portable 
fluorometer for express-diagnostics of photosynthesis was designed. The device allows easy to estimate the level 
of influence of natural environment and pollutions to alive plants. The device is based on real time processing of 
the curve of chlorophyll fluorescent induction. The principles of operation and results of experimental researches 
of device are described in the article. 

Keywords: Kautsky effect, chlorophyll, chlorophyll fluorescence induction, fluorescence, fluorometer, portable 
device, vine plant. 
ACM Classification Keywords: J.3 Life and Medical Sciences - Biology and Genetics 

Introduction 
Development of information technologies and microelectronic circuits allows filling of the world market with 
portable computer devices such as handheld PCs, laptops, media players, medical devices (tonometers, 
glucometers, cardiographs), navigation devices and so on. The achievements of Ukrainian scientists who work in 
the field of biosensors combined with modern capabilities of information technologies provided development of 
devices for express-diagnostics of plant state, evaluation of environmental parameters, exposure of infective 
diseases etc. 
In the context of the program of Presidium of NAS of Ukraine "Development in the field of sensor systems and 
technology" in Glushkov’s Institute of cybernetics of NAS of Ukraine the portable computer device was developed 
for express-diagnostics of stress factors which influence on the plant's state. The portable device measures 
chlorophyll fluorescence induction (CFI) without plant destruction. Using the curve of CFI (alike the cardiogram) 
allows diagnosing influence of one or other influential factor on the plant's state. 

Features of biological objects’ luminescence 
As a result of external influence, different objects, including biological ones, can generate plenty of radiation that 
is independent of these objects temperature.  
All the types of radiation that were caused by some external sources of energy are called luminescence. Duration 
of luminescence after external influence stopping exceeds period of light fluctuations. Luminescence is 
conditioned by fluctuations of relatively small number of atoms or molecules of substance that become excited 
under energy source activity. Radiation is a result of transformation of atoms’ or molecules’ states into 
fundamental (unexcited) or less excited (they have less energy) states.  


