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MODELING OPTICAL RESPONSE OF THIN FILMS:
CHOICE OF THE REFRACTIVE INDEX DISPERSION LAW

Peter Sharlandjiev, Georgi Stoilov

Abstract: Determination of the so-called optical constants (complex refractive index N, which is usually a function
of the wavelength, and physical thickness D) of thin films from experimental data is a typical inverse non-linear
problem. It is still a challenge to the scientific community because of the complexity of the problem and its basic
and technological significance in optics. Usually, solutions are looked for models with 3-10 parameters. Best
estimates of these parameters are obtained by minimization procedures. Herein, we discuss the choice of
orthogonal polynomials for the dispersion law of the thin film refractive index. We show the advantage of their
use, compared to the Selmeier, Lorentz or Cauchy models.
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Introduction

The problem of estimation of the optical parameters of thin films: physical thickness (D) and complex refractive
index N = n — i*k (real refractive index (n) and extinction coefficient (k)) is challenging from mathematical point of
view and has technological and scientific importance. Usually, n and k are unknown functions of the wavelength
(A). The task is to evaluate them by the use of measurable quantities, such as film transmittance (T), front side
reflectance (R) and/or backside reflectance (R’). Different methods have been proposed but no one has shown
yet absolute advantage over the others. We can say that estimation of thin films optical parameters is more of an
art, than scientific analysis. There are several steps that have to be fallowed: a) creation of a model, which
describes the optical behavior of the film; b) collecting empirical data; c) fitting the postulated model to the data;
d) evaluation of the results. The model of the wavelength dependence of the refractive index is of crucial
importance: it defines the number of the unknown parameters and their functional relation. Some of the most
popular models are named after the scientists that have proposed them: Cauchy, Drude, Selmeier, Lorentz, etc.
Cauchy dispersion law is purely empirical:

n(ﬂ):%+%+%+....,
where Ao, A1, A,... are parameters to be determined. The number of terms can reach 10 — 15. Selmeier
dispersion is semi-empirical:

where A, A1, By,... are parameters to be determined. More terms can be added for different oscillator positions.

Once the model is assumed, minimization techniques are applied to estimate the unknown parameters to the
optical response of the thin film.

Here we shall consider the use of orthogonal polynomials in the dispersion law representation. We shall simulate
a measurable quantity (transmittance) with predefined wavelength dependence of the complex refractive index.
Then we shall fit the simulated data to different models of refractive index. Parameters in the dispersion law will
be estimated, comparing Cauchy, Selmeier and orthogonal polynomials (OP) approaches.

Models and Computational Procedures

We shall consider a thin homogeneous film with wavelength dependence of the complex refractive index and
physical thickness of 350 nm. The spectra of n(L) and k(\) are shown in Figure 1a and 1b, respectively. The
choice of n(A) and k(A) is characteristic for many optical materials, such as amorphous semiconductors.
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Figure 1. Spectral dependence of the refractive index (a) and extinction coefficient (b)

The simulated measurement is the spectrum of transmission in VIS at normal incidence of light calculated by the
help of Abelés characteristic matrix [1], Figure 2. The measurable quantity is T ~ tt* (* stands for complex
conjugate). The amplitude transmittance t is a complex quantity, related to N and D by transcendental equations
[1]. During the fitting calculations, we have assumed that the physical thickness D and the extinction coefficient
k(1) are known, so that there is no fitting on these quantities. In this way we have strongly reduced parameter
interactions. We have used associated Legendre functions P(m,p;A) of degree p and order m = 0,1,...,p, as
orthogonal polynomials. Thus, the dispersion law for n(A) stands as:

n(A) = AP (0, p; A1)+ AP (L P A)+ AP(2, P A)+....
For Cauchy, Selmeier or OP dispersion laws, 8-9 coefficients are need for relevant representation of the

refractive index n(A), shown in Figurela. The nonlinear data-fitting problem is solved by the Levenberg-Marquardt
method (unconstrained minimization) [2].

Results and Discussion

Calculations of the film optical response and preliminary fits showed that Selmeier model of the refractive index
has to be disregarded: it cannot describe properly the ‘experimental’ data, shown in Figure 2. In order to compare
the Cauchy and OP models, we have used 8 coefficients in their corresponding presentations, so that the
degrees of freedom in the two cases are the same. Levenberg-Marquardt procedures demand initial guess of the
unknown parameters. For each fit, we have put 7 of the coefficients equal to zero, while the first one is 20% up of
its initial ‘true’ value. After the termination of the minimization, one step refinement of the estimations is
undertaken as well. The results obtained with the two models differ significantly. The residual error of the fit with
the Cauchy model is an order of magnitude greater. The residual error of the fit with OP reaches 0.1%, which is
equal to the experimental uncertainty of high precision spectral instruments. This means that further improvement
of the fit is meaningless. The minimization procedure is much faster in latter case — the consumed CPU time is
~20 times greater for the Cauchy case. In Figure 3 the relative errors of the estimated wavelength dependence of
the refractive index are shown. This is an illustration of the performance of the Cauchy and OP models.

1 25

o

Transmittance
o o o
- o

Relative error, %

e
@

4
N

e

0 . . . . . . 1ol . . . . . .
400 600 800 1000 1200 1400 1600 1800 “400 600 800 1000 1200 1400 1600 1800
WavelLength, nm Wavelength, nm

Figure 2. Calculated transmittance of the thin film Figure 3. Relative error of refractive index fit:
as ‘experimental’ data for the fit (dots) orthogonal polynomials; (line) Cauchy law
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The advantages of fitting orthogonal polynomials to experimental data are well-known [2]. In our case, the
situation is more complicated because of the nonlinear functional dependence of the target on the fitting
parameters. However, the main advantage of this approach is sustained: due to the orthogonal property, each
coefficient in the dispersion law representation can be determined independently from the others. If one has
already obtained an evaluation of m* degree polynomial, an additional term in the dispersion law ((m+1) degree
polynomial) requires only one new coefficient to be determined. The other coefficients remain the same, unlike in
the Cauchy or Selmeier case. In the Cauchy case, high order polynomials may result in ill conditioned matrices.
Besides, the joint confidence region in the parameter space, estimated by the covariance matrix, has minimum
volume.

Conclusion

We have shown that the use of orthogonal polynomials in refractive index modeling is effective and highly
productive. Although the involved coefficients have no physical meaning, this is also true for the Cauchy and
Selmeier models. The OP principal feature is that the number of parameters to be fitted can be kept low at initial
steps and then it can be increased, retaining the intermediate results. The orthogonal polynomials approach can
be of use in many branches of material science, including photonic crystal design, optimization of elements for
effective conversion of solar radiation, etc.
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FORMALIZATION OF INTERACTION EVENTS IN MULTI-AGENT SYSTEMS

Dmitry Cheremisinov, Liudmila Cheremisinova

Abstract: The problem of the description of interaction between spatially divided agents in the form of dialogues
is explored. The concept of processes synchronization is analyzed to formalize the specification of interaction at
the level of events constituting the processes. The approach to formalization of the description of conditions of
synchronization when both the independent behavior and the communications of agents can be presented at a
logic level is offered. It is shown, that the collective behavior of agents can be specified by the synthetic temporal
logic that unites linear and branching time temporal logics.
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