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GENERALIZED INTERVAL ESTIMATIONS IN DECISION MAKING AND SCENARIO 
ANALYSIS 

Gennady Shepelyov, Michael Sternin 

Abstract: Main features of a new method of expert knowledge elicitation – method of generalized interval 
estimations – and peculiarities of its using in decision making are presented. Expert estimation of an analyzed 
quantitative parameter is defined in the framework of the method by a set of intervals. This set may be shown on 
a plane (X, Y) by a curvilinear trapezoid. If densities of probability distributions were defined on Y-axis (“weights” 
of different interval estimations at their set) and on X-axis (for all interval estimations at the set) we received 
generalized interval estimation (GIE) of the parameter. GIE method may be used at different directions. Firstly, 
we may reduce GIE to mono-interval estimation averaging distributions on X-axis, taking into account their 
weights, and use then famous probabilistic methods to analyze problem. The average distribution is in fact a 
probability mixture of distributions on intervals of their set. Secondly, we may study complete structure of interval 
estimations that reflects expert knowledge in details. Here we automatically receive for resulting diagrams (X -
parameter value, Y - level of probability) such probability distributions that are boundaries of all distributions of 
GIE (probability tube, or box). Besides we may receive probability distributions for different sections of p-tube 
both for parameter values and for probability levels and use these curves in the process of decision-making. At 
last, we may use GIE method as an instrument of scenario analysis in decision-making. Illustrative examples are 
given in the paper to demonstrate the decision-making, expert knowledge and scenario analysis aspects of the 
proposed approach. 

Keywords: Generalized interval estimations, scenario analysis, generalized probability distributions, probability 
tubes. 

ACM Classification Keywords: H.4.2 Types of Systems – Decision support; G.3 Probability and Statistics – 
Distribution functions. 

Introduction 

During analysis of many practical problems there are rather often situations when decisions are made based on 
certain quantitative indicators, or criteria, important for decision-makers (e.g. net present value of investment 
projects in project analysis; present and future exchange rates, interest rates and stock prices in financial markets 
analysis; volumes of oil/gas reserves and prices in oil/gas property evaluation and others). The values of these 
indicators are usually the outcomes of various computational schemes (mathematical models). As a rule such 
models are already well known for many areas of human activity. However the complexity of real-life problems 
inevitably brings uncertainties into the values of input data (parameters) of models. In many situations, especially 
for multidisciplinary tasks, expert knowledge, in fact, could be the only way to overcome these difficulties and 
provide reasonable estimates for parameters. Thus to analyze many problems under uncertainty we should 
combine methods of expert knowledge elicitation, representation and methods of decision making. This 
stimulates the development of various approaches to expert judgment formalization, of methods and tools to elicit 
and represent expert knowledge in an adequate way. 
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In this paper, we present a survey of main results of a method to elicit and represent expert knowledge on 
quantitative parameters in problems under uncertainty – the method of Generalized Interval Estimations (GIE) 
[Shepelyov and Sternin, 2003; Chugunov et al., 2006; Chugunov et al., 2008 A; Chugunov et al., 2008 B; 
Shepelyov and Sternin, 2008]. We provide several illustrative examples to demonstrate both the decision-making, 
expert knowledge and scenario analysis aspects of the proposed approach.  

Interval and Probabilistic Estimations 

Until now, in spite of presence of other tools (e.g., fuzzy sets and possibility theory, rough sets), the main 
language that experts of real economy branches use to characterize uncertainties in input parameters of models 
is based on interval analysis and probability theory. Methods of interval analysis are adequate in situations under 
maximal uncertainty, when the expert is able to provide only the minimum and maximum value for the estimated 
parameter. But if one applies only interval methods to quantify uncertainty in the model input parameters, the 
width of the interval for the model outcome is likely to be very wide, and the value of such information often can 
hardly help one to make decisions. The combination of interval analysis and probability theory could be 
advantageous when the expert has more precise knowledge on the estimated parameters. In this case, the input 
data of models is represented by experts as random variables defined on certain intervals by their probability 
distribution functions that characterize uncertainty in the framework of interval estimations. If interval and 
probabilistic expert estimations for parameters of used models were received, final results of models could be 
calculated with methods of the Monte-Carlo family. Results of probabilistic calculations may be represented on a 
graph displaying the probability “not less than” (probability of guaranteed result) as a function of analyzed criteria.  

Figure 1 shows an example of such graph for an oil reservoir evaluation for field that is in the predrilling (initial) 
stages of exploitation. Monte-Carlo calculations were made on base of the standard volumetric model [Welsh et 
al., 2004]. Estimated reserves Q are calculated as the product of input parameters of the volumetric model 
representing reservoir properties and the expert specified the input parameters as random variables.  
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Fig. 1. An example of probabilistic reserves estimate 

 
 

The decision-maker (DM) may analyze this graph from two points of view: what is the level of probability (chances 
on the realization of a chosen outcome) that corresponds to a desired value of oil reserves in place, or what is the 
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value of the analyzed indicator for a given level of confidence? DM can then make a reasonable decision based 
on this interpretation. Based on the international classification of oil and gas reserves, the DM (investor) may 
obtain the reserves estimates (proved, probable and possible reserves categories) needed for a final decision. 

For example, according to the classification, proved reserves would correspond to the probability level of 0.9; 
proved + probable reserves to the probability level of 0.6; proved + probable + possible ones to the probability 
level of 0.2. Let us note that these estimations are point ones though initial parameters had interval estimations. 
Various measures of risk connected with different possible decisions may be introduced and used in the 
framework of this approach. 

Poly-interval and Generalized Interval Estimations 

It may seem that the “mono-interval” approach could be enough to quantify uncertainty in decision making 
problems of mentioned above class. However, our joint work with geologists as experts showed some 
narrowness of such way. Experts, giving interval estimation of a parameter, may meet some difficulties both on 
length and on location of estimation. Attempts to eliminate these difficulties defining very wide interval estimations 
decrease usefulness of expert knowledge. On the other hand, if an expert tries to be too precise (i. e. the interval 
estimation is too narrow) there is a high probability that the true value of the parameter could be outside of the 
given range. Psychologists [Kahneman et al., 1981] observed this effect for a more general environment, not only 
related to oil and gas industries. Thus the problem has sufficiently universal character. 

This motivated us to develop a method that could allow expressing an expert knowledge on an estimated 
parameter in a less restrictive way and thus quantify expert’s knowledge more precisely. Namely, we started with 
the idea to represent possible variability of interval estimation length and location by letting the expert to specify a 
set of intervals, rather than just one interval. We named such construction poly-interval estimation (PIE) of a 
parameter. In many situations experts would feel more comfortable thinking of several possible scenarios 
represented by several corresponding intervals, rather than assessing only one interval to describe “overall” 
uncertainty in parameter. Thinking in scenario-oriented framework would also make expert pay more attention to 
each possible scenario and might reduce effects from heuristics [Morgan and Henrion, 1992].  

Expert defines in the framework of the method, as an initial estimation of parameter D, an interval of minimal, in 
his opinion, length (or “up” interval – “best guess”) [Dlu, Dru] – here l, r mean left, right boundaries of the interval -
and then, taking into account all possible uncertainties, an interval of maximal, in his opinion, length (“down”, or 
base, interval – “safe bet”) [Dld, Drd]. Now, one may further assume that a subset of intermediate intervals 
between up and base intervals also belongs to the PIE, although this is not necessary, since the subset of 
intermediate intervals may be selected from all possible ones based on the expert knowledge. PIE may be 
represented on a plane (X, Y) by a curvilinear trapezoid. The simplest example of a PIE for nested set of intervals 
is shown in figure 2.  

Here Y-axis (α-axis in our notation) is the axis of marks of intervals and we suppose that 0 ≤ α ≤ 1, and X-axis 
(D-axis in our notation) is the axis of values of parameter under consideration. Side boundaries of trapezoid could 
be also specified by the expert when he/she defines the subset of intervals in PIE. Each interval of the trapezoid 
represents a possible scenario of parameter realization and the expert may also specify chances or probability for 
each scenario (and thus probability distribution on α–axis). If the expert defines distributions both on α- and D-
axes we obtain generalized interval estimation (GIE) corresponding to the PIE. Probability distribution on α-axis 
represents, in a sense, “weights” of scenario-bands. Probability distributions on D-axis represent chances, 
according to expert knowledge, on realization of possible values of parameter for a given scenario-interval. Thus 
GIE of a parameter is characterized by joint distribution function of two random variables α and D with density 
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function Ψ(α, D) = f1(α)f2(D|α), defined on PIE of the parameter. Hence, there are several ways to represent 
uncertainty in the framework of GIE method: specification of initial (characteristic) interval estimations; shape of 
PIE; specification of distributions on scenario-intervals; specification of “chances” or “weights” for scenario-
intervals. This also means that generalized interval estimations are able to represent the following two aspects of 
uncertainty. On the one hand, the expert may express certain confidence in that some subset of intervals from 

PIE adequately represents his/her understanding of the estimated parameter’s value (this is described by f1()). 
On the other hand, each possible scenario implies inherent variability of parameter’s value bound by the 

corresponding interval (this is described by f2(D|)). 

 

 

 

Fig. 2. Poly-interval estimation of an input parameter for nested set of intervals 

 

One may build more general PIE and corresponding GIE, for example if an expert defines initial characteristic 
interval estimations to represent optimistic, realistic and pessimistic estimations corresponding to the bottom, 
middle and top intervals shown on Figure 3. Here we have shifted, not embedded as above, set of intervals. 

 

 

 

 

 

 

 

Fig. 3. Generalized interval estimation of an input parameter for shifted set of intervals 
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conditions but also on the oil prices. As the oil prices goes up, so does the estimation of recoverable reserves 
volumes. Let us construct the following PIE: Y-axis is axis of the oil prices, X-axis is axis of volumes of 
recoverable reserves. For each point estimate of the oil price there exists an interval estimation of recoverable 
reserves. The shape of such PIE would resemble a shape of the tower at Italian town Pisa, i.e. PIE is built on 
shifted intervals. This example also demonstrates additional possibilities of PIE/GIE method to quantify 
uncertainty in estimation of dependent parameters. Let also note that Y-axis is not here axis of interval marks but 
has real meaning.  

Now there are three ways to use information provided by the expert in the framework of GIE approach for 
decision-making and expert analysis. GIE method allows one to obtain an aggregated (averaged) probabilistic 
distribution, which we also refer to as GIE projection, defined on the base interval of PIE (an interval, containing 
all possible values for D) and reduces calculation of the model output to a well-known statistical simulation 
procedure, which can be performed by Monte-Carlo family methods [Sternin and Shepelyov, 2003]. Alternatively, 
GIE can be treated as a set of intervals with a certain internal structure that represents uncertainty in expert 
knowledge concerning in estimated parameter [Chugunov et al, 2006]. At last GIE approach may be used as tool 
of scenario analysis in decision making [Shepelyov and Sternin, 2008]. All cases will be considered in the next 
sections.  

GIE Projection: Mono-interval Approach in GIE Method 

For simple case of nested intervals in PIE with straight boundaries (fig. 2) we can obtain the following expression 

for a probability density function of averaged distribution function )(Dfav : 
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Here Dl(α) = αDlu + (1 - α)Dld, Dr(α) = αDru + (1 - α)Drd. Similar but more complicated expressions could be derived 
for GIE with PIE of more general shapes, e.g., as the one in figure 3. 

For simple distributions defined by functions f1 and f2 (e.g., uniform and triangular distributions) one can obtain 
direct analytical expression for GIE projection [Shepelyov and Sternin, 2003]. We will consider the case of 
uniform distributions in the paper some later. 
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Let us consider an illustrative example for a more complicated case, when GIE has different distributions on 
different scenario-intervals [Chugunov et al, 2006]. During the evaluation of investment projects in real-estate 
development business, the final decisions could be made only after detailed analysis of the lot under 
consideration and business perspectives of the area. Due to uncertainties of various natures, the values of some 
project’s parameters are unknown at the moment of the analysis and are estimated by the expert. In case of 
business center development, such parameters would include the future price for square meter. 

Based on the analysis and data available, the expert is asked to estimate this parameter. GIE method is used to 
elicit and quantify expert judgments. The results of elicitation process is given in figure 4, where we show density 
and cumulative probability functions of guaranteed results for the price for sq. m. as random variable. We also 
provide probability distributions for case where expert use mono-interval approach. 

Interval from 2 to 11 thousand money units (m.u.) was specified by the expert as a base interval. Top interval was 
defined symmetrically – from 5 to 8 thousands m.u. Initially joint distribution function of GIE was built based on 

uniform distributions on both  and D.  
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Fig. 4. Density function and cumulative probability function of guaranteed results for future price of sq. m. 

 
 

Then expert tested a hypothesis with selection of the most preferable value for the price. The expert defined GIE 

as a combination of uniform distribution on  and triangle one on D with modal value at 6 thousands m.u. (this 
value is shifted to the left relative to the center of mini interval). This setup led to unreasonably high, in expert’s 
opinion, chances for values in a neighborhood of the modal value. Since, according to the expert, the narrower 

the interval the more equiprobable the values are, the next hypothesis included uniform distribution on  and 
triangle distribution on D, with the same as earlier modal value on base interval, but it steadily transformed into 
uniform distribution on top (mini) interval.  

Below we provide expression (2) for density f(D|) of similar distribution, which could resemble one a shape of 
country house with roof and walls. On the base interval, the “house” has only “roof” (triangular distribution) and on 
mini interval it has only “walls” (uniform distribution). 
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Here Dr, Dl are respectively right and left boundaries of corresponding intervals of PIE (for a straight line case Dr, 
Dl are given by (1B)), Dp is modal value of distribution.  

According to fig. 4, one can see that at level P = 0.85 specified by the expert as his “comfort level”, the difference 
in estimations of prices for sq. m., corresponding to the results from using mono-interval triangular distribution 
and expert-defined GIE, is more than 10%:  4340 m.u. and 4880 m.u. respectively. 

GIE approach allows one to generate new mathematical objects - probability distributions that are generalizations 
of traditional distributions. For example, one can construct generalized uniform distribution (GUD) as a projection 
of GIE when uniform distributions are defined on both axes. Let us consider this simple but important for practice 
case in more details. In fact a class of GUD may be constructed. Some representatives of GUD will be used later 
in the process of discussing relationship of GIE method and scenario analysis. Now we consider the simplest 

case assuming the straight line boundaries of PIE on embedded intervals. Uniform distributions on both  and D 

axes are defined by f1() = 1, f2(D|) = 1/[Dr() – Dl()]. The integrals in (1A, B) may integrate by parts to obtain 
the probability density function for the GUD:  
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where B = Drd – Dld and M = Dru - Dlu. In the limit M → B this distribution transforms to traditional uniform one: 

 f(D) = 1/M.  

Corresponding expressions for cumulative probability of generalized uniform distribution are: 
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Here l and r are defined by (1A). It should be mentioned, that GUD may be interpreted as a probability mixture 
of uniform distributions with uniform mixing function. Specific distributions on the intervals in the mixture are 
defined by the shape of PIE.  
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It is interesting to compare behavior of uniform distributions defined on the base and mini intervals and GUD on 
the base interval. All three functions would intersect in one point. This point is defined by the following 
coordinates: Di = (BDlu – MDld)/(B – M), Pi = (Dlu – Dld)/(B – M).  Figure 5 shows three distribution functions for the 
following case: Dld = 10, Drd = 50, Dlu = 30, Dru = 35.  
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Fig. 5. Cumulative uniform probability functions for mono-interval and generalized cases 

 

This interpretation of the GIE method may be used to analyze the decision making problems that earlier were 
approached with probabilistic mono-interval methods. In particular, oil reserves evaluation may be performed by 
GIE method when some or all of the input parameters of volumetric model are described by the expert as GIE 
estimations. Comparison of two final probabilistic curves for the oil reserves estimations shows that behavior of 
cumulative curve for GIE case is, in a sense, more balanced and reliable than the outcome for probabilistic mono-
interval case. Specifically, GIE increases probabilities of small volumes of reserves and decreases probabilities of 
large volumes.   

Let us now analyze the moments of GUD. Following traditional calculations for expectation <D>, we obtain: <D> = 
(Dld + Drd + Dlu + Dru)/4. Properties of GDU allow one to derive simple recurrence formula for central moments of 
n-th <Dn>c and (n-1)-th <Dn-1>c orders. To derive this expression, let us use integral definition of central moments 
and formulae (2) for probability density of GUD. After integration by parts, one can see that algebraic sum of 
logarithm terms equals zero, and residual can be expressed through polynomial term and moment <Dn-1>c. 
Because BDlu – MDld = BDru - MDrd, we finally obtain: 
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 (5) 

 

Note that for symmetric PIE Dld + Drd = Dlu + Dru, and the second term in (5) is equal to zero for this case. Formula 
(5) allows one to calculate central moment of (n+1)-th order, if one has central moment of n-th order and 
expectation for GUD.  
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From the theory of probability we know that the shape of probability distributions can be well characterized by the 
first four moments. In case of GUD, these moments can be calculated from (5). But for the first three of them we 
may obtain exact analytical expressions. Let us introduce the following notation <Dd> = (Dld + Drd)/2, <Du> = (Dlu + 
Dru)/2, Lr = Drd – Dru, Ll = Dlu – Dld. Note that Lr = Ll for symmetric PIE.  

Then for the variance <D2>c of GUD we have: 
2 22 2 2 2

2

( ) ( )
.

36 12 36 48
d u r l

c

D D L LB M MB B M MB
D

        
       

 

The first term of this expression shows dependence of variance on the lengths of intervals in PIE, the second one 
shows dependence of variance on a possible asymmetry of PIE. 

For the coefficient of skewness <D3>c we obtain: 
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Here we take into account the fact that variances of mono-interval uniform distributions defined on the base and 
mini intervals are equal to B2/12 and M2/12 respectively.  

The sign of <D3>c is determined by the sign of a difference <Dd> - <Du>, because B2 > M2. This means that GUD 
has negative asymmetry (shifted to the left) if <Dd> is less than <Dd>, and it has positive asymmetry (shifted to 
the right) if <Dd> is larger than <Du>.  

Values of kurtosis may be also calculated from (5). If we compare standardized abrupt normal distribution defined 
on finite interval with GUD, we see that there are allokurtic GUD: specifically, kurtosis for symmetric GUD may 
have both positive values and negative values and also zero value (Figure 6).  
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Fig. 6. Densities of generalized uniform and normal distributions for different values of kurtosis 
 

Another set of decision-making problems that can be approached in the framework of the GIE method by GIE 
projection calculation includes dynamic (time-dependent) problems and problems with dependent parameters.  
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Figure 7 illustrates situation when the expert describes dynamic behavior of parameter D2 as a pair of intervals for 
each time (parameter D1). This setup could be represented by a “tube” with walls of finite variable thickness. Now 
we may construct GIE for each value of time if expert could also specify probability distributions on t-sections. 
The base intervals of the GIE for each time step are defined by outer boundaries of the tube and mini intervals 
are defined by inner ones. Since time dependence could be considered as just a case of general parameter 
dependence, GIE for dealing with uncertainty in dependent parameters may be built in a similar way.  

When dealing with dynamic tasks in the GIE approach, an expert may define GIE for several characteristic 
sections (time-steps) and then “propagate” GIE for other time values by interpolation. If an expert thinks that 
distributions on different time sections belong to the same distribution type, one can derive analytic expressions 
for the projections of joint distribution functions of GIE. Specifically, this can be done for various combinations of 
uniform and triangle distributions on   and D. 

 

 

Fig. 7. GIE for parameter D2 changing with time or parameter D1 

 

Internal Structure of GIE: Probability Tubes 

This way is to reject averaging but analyze inner structure of GIE and use results of such analysis during 
decision-making (Chugunov et al., 2008). Let us fix some value Ds from the base interval. Since the expert 

defines probability distribution for each interval (or -scenario) of GIE, we can try to analyze distribution of 
cumulative probability functions P(D<Ds|α) with respect to α. Marginal probability distribution function for random 
variable D is as follows: 
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We wish to derive up and down bounds for P(D<DS): 
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Here αd and αu correspond respectively to down and up intervals from GIE (figures 2, 3), which contain the fixed 
value Ds, 
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Note, that functions Pmin(Ds), Pmax(Ds) are non decreasing functions defined on the base interval; they both 
always equal zero at the left endpoint of this interval, and equal one at its right endpoint. Hence, these functions 
are some probability distribution functions. Unknown “true” probability distribution function lies between these 
functions. So we may receive triple of probability distribution functions Pmin(Ds), Pmax(Ds) and P(D<Ds) on the 
base interval. Pair Pmin(Ds), Pmax(Ds) constitutes probability tube (p-box) [Dempster, 1967; Williamson and 
Downs, 1990], which represents uncertainty in assessment of “true” distribution (figure 8).   

Let us now go back to distribution of P(D<Ds|α) values for some fixed Ds. Let Ds belong to each interval from the 
subset, described by the intervals corresponding to αu and αd. Then, if all values P(D<Ds|α) are unique, we can 
define probability distribution for values P(D<Ds|α) with probability density g(P(D<Ds|α)):  

 

1 1( ( | )) ( ) / ( )
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d

g P D Ds f f d
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      .  

 

Probability tubes approach is widely used in real-life problem analysis under uncertainty. Note, that each 
boundary p-tube is not always correspond to a single possible scenario (e.g. optimistic or pessimistic), but could 
be specified by a combination of those, with each scenario playing its role on a certain subinterval of the base 
interval. Therefore, in some complex situations it might be difficult for an expert to specify the bounds for a whole 
base interval at once. GIE approach allows an expert to construct boundary p-tubes Pmin(Ds) and Pmax(Ds) 
automatically based on naturally driven reasoning about possible scenarios to describe values of estimated 
parameter and provides comprehensive description of the p-tubes obtained.  

 

It should underline that GIE method permits for each value Ds of some estimated parameter D obtain on the base 
interval not only boundary tubes [Pmin(Ds), Pmax(Ds)], but also a probability distribution on section D = DS of 
boundary tubes. In a similar way, for each fixed probability value Ps, one can obtain a distribution for values of 
estimated parameter D related to this fixed probability level. These two distributions represent in GIE formalism 
uncertainty in expert judgments on both estimated parameter values and corresponding probability distributions.  
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Fig. 8. Probability tubes generated by GIE. 

 

 

 

Fig. 9. Probability distribution for proved reserves 

 

Let’s again give an illustrative example of oil reserves estimation in the framework of probabilistic approach. 
Above we do so for mono-interval picture, there point estimations for all categories of oil reserves were received 
(see fig. 1). Now we present some results of calculations for volumetric model where input parameters have GIE 
estimations. One can see the results for proved reserves (probability level 0.9) on figure 9. Here values of proved 
reserves lay in the range from 24.5 to 32.5 ml tons. For the same input parameters mono-interval approach would 
give us 29.5 ml tons for this reserves category. From figure 9 one can see that this value corresponds to 0.35 

D 
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P 
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confidence level on probabilistic curve, which may be unacceptably low for decision maker. Mean value is 28.4 ml 
tons. For acceptable confidence level 0.8 the value for proved reserves is 26.4 ml tons, that less than result for 
mono-interval approach. Similar analysis may be performed for probable and possible reserves categories.  

Thus GIE method allow decision maker to obtain not only ranges, but, what is more important for justifiable 
decision making, cumulative probabilities for each reserves category. 

GIE Method in Scenario Analysis 

Scenario approach is rather often used in theory and practice of decision-making for the analysis of complex ill-
structured problems. The methods of scenario analysis ensure the information-analytical support of the processes 
of decision making under the conditions of uncertainty. Advantages of scenario approach are accompanied now 
with a disadvantage due to the need for preliminary labor-consuming preparation of a set of scenarios that should 
be analyzed. Therefore, at present a finite number of scenarios are usually used for analysis that significantly 
limits a set of analyzed alternatives and the most rational ones may be exclude in advance. It means that the 
development of rapid methods for the elaborating alternative scenarios is important. An approach, which gives 
the set of scenarios by means of indicating its boundaries, may be promising approach. This can be done in the 
framework of the GIE method. Mentioned situation is a similar to situation of comparison of discrete optimization 
and a linear programming approach. At the first case choice of the “best” alternative takes place from alternatives 
prepared earlier.  

Above it was noted that the intervals of PIE in the GIE method might be interpreted as the possible scenarios of 
the realization of the initial parameters or resultant index, and distribution on the Y-axis of PIE defined “the 
weights” of scenarios. However, for the systematic use of GIE method in the scenario analysis the method should 
be fitted out for the solution of problems with such dependent parameters where one of the parameters reflects 
the state of “external environment”, and the second, depending on the first, is the initial parameter or the resultant 
index of model. Let us note also that in contrast to the original GIE scheme where the Y-axis of PIE was the axis 
“of the marks” of intervals and had not identifiable “physical” sense, in scenario approach both axes of PIE had 
real meaning. Thus the expansion of GIE method to the tasks of the scenario analysis requires the modification of 
mathematical tools developed previously. 

 

Table 1. Configurations of PIE for D ≠ 0, U ≠ 0 (trapezoidal shape), D = 0 или U = 0 (triangular shape) 

Shapes of PIE PIE of trapezoidal shape PIE of triangular shape 

1 
rurdluld VVVV   urdld VVV   

2 
rulurdld VVVV   rduld VVV   

3 
rdrululd VVVV   rdldu VVV   

4 
rurdldlu VVVV   drulu VVV   

5 
rdruldlu VVVV   rudlu VVV   

6 
rdldrulu VVVV   rulud VVV   

 

Let us discuss the modifications in PIE shapes that need in scenario analysis. Note by V the values of the test 
parameters or indicators in problems with dependent variables and α - values of the external factors affecting the 
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occurrence of possible values for V, α  [αm, αM], where αm (αM) - the minimum (maximum) value of α 
respectively. Now PIE is set by the quartet Vld (left-lower angel of PIE), Vrd (right lower angel), Vlu (left upper angel 
of PIE), Vru (right upper angel), D = Vrd - Vld, U = Vru - Vlu. The relationships between members of the quartet 
determine the shape of PIE.  

All possible shapes of PIE for the case D ≠ 0, U ≠ 0 (PIE of trapezoidal shape), and D = 0, Vld = Vrd = Vd, or U 

= 0, Vlu = Vru = Vu (PIE of triangular shape) are presented in Table 1. 

Let’s pay attention to the fact that if the original pattern of PIE is often a set of nested intervals for the problems 
with dependent parameters is not the case. 

Earlier we studied generalized uniform distribution of probabilities for PIE on nested intervals. In problems with 
dependent parameters variety of possible shapes of PIE leads to the appearance of a family of generalized 
uniform distributions. The corresponding relations are presented in Tables 2, 3. 

 

Table 2. Generalized uniform probabilities distributions for trapezoidal PIE 

Sectors of PIE Densities for D≠U Densities for D = U Distributions: D≠U Distributions: D=U 

1.1. luld VVV   1)( IVf   1)( LVf   1)( FVVP S   1)( GVVP S   

1.2. rdlu VVV   2)( IVf   2)( LVf   2)( FVVP S   2)( GVVP S   

1.3. rurd VVV   3)( IVf   3)( LVf   3)( FVVP S   3)( GVVP S   

2.1. rdld VVV   1)( IVf   1)( LVf   1)( FVVP S   1)( GVVP S   

2.2. lurd VVV   4)( IVf   4)( LVf   4)( FVVP S   4)( GVVP S   

2.3. rulu VVV   3)( IVf   3)( LVf   3)( FVVP S   3)( GVVP S   

3.1. luld VVV   1)( IVf   1)( LVf   1)( FVVP S   0)(  SVVP  

3.2. rulu VVV   2)( IVf   2)( LVf   2)( FVVP S   5)( GVVP S   

3.3. rdru VVV   5)( IVf   5)( LVf   5)( FVVP S   0)(  SVVP  

4.1. ldlu VVV   6)( IVf   6)( LVf   6)( FVVP S   0)(  SVVP  

4.2. rdld VVV   2)( IVf   2)( LVf   2)( FVVP S   5)( GVVP S   

4.3. rurd VVV   3)( IVf   3)( LVf   3)( FVVP S   0)(  SVVP  

5.1. ldlu VVV   6)( IVf   6)( LVf   6)( FVVP S   6)( GVVP S   

5.2. ruld VVV   2)( IVf   2)( LVf   2)( FVVP S   2)( GVVP S   

5.3. rdru VVV   5)( IVf   5)( LVf   5)( FVVP S   7)( GVVP S   

6.1. rulu VVV   6)( IVf   6)( LVf   6)( FVVP S   6)( GVVP S   

6.2. ldru VVV   4)( IVf   4)( LVf   7)( FVVP S   8)( GVVP S   

6.3. rdld VVV   5)( IVf   5)( LVf   5)( FVVP S   7)( GVVP S   
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Table 3. Generalized uniform probabilities distributions for triangular PIE 

Sectors of PIE Densities  Distributions functions 

1.1: ld rdV V V   1( )f V K  1( )SP V V H   

1.2: rd uV V V   2( )f V K  2( )SP V V H   

2.1: ld uV V V   1( )f V K  1( )SP V V H   

2.2: u rdV V V   3( )f V K  3( )SP V V H   

3.1: u ldV V V   2( )f V K  4( )SP V V H   

3.2: ld rdV V V   3( )f V K  3( )SP V V H   

4.1: lu ruV V V   4( )f V K  5( )SP V V H   

4.2: ru dV V V   5( )f V K  6( )SP V V H   

5.1: lu dV V V   4( )f V K  5( )SP V V H   

5.2: d ruV V V   6( )f V K  7( )SP V V H   

6.1: d luV V V   5( )f V K  8( )SP V V H   

6.2: lu ruV V V   6( )f V K  5( )SP V V H   
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New possibilities that appear in the tasks with the dependent variables due to “the equality of rights” of PIE axes 
may use in two directions. To more completely consider possible uncertainty of the estimation “of external factors” 
(e. g. forecast of prices in the above mentioned task about recoverable reserves of oil) one may build on the Y-
axis (axis of prices in the task about the reserves) additional GIE besides initial one. Furthermore, in some tasks 
of the type of the task concerning in the dependence of the volumes of recoverable reserves on the price of the 
hydrocarbons, may be useful constructing for each level of the prices not  mono-interval, but GIE that leads to the 
appearance “multidimensional” GIE.  
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Probabilistic Forecast for World Oil Production: Illustrative Example 

Here we will give an illustrative example to demonstrate application of GIE method, and, specifically, generalized 
uniform distributions, in scenario approach to analyze probabilistic forecast for world oil production. There is a 
wide spectrum of estimations for world oil production and oil reserves base ranging from pessimistic ones that 
predicts the end of oil era in several years, up to those optimistic that argues there are sufficient oil reserves, at 
least, up to the end of this century.  

The pessimistic scenario arises from the theory of “peak of oil” which is quite popular among many oil analysts. 
According to this theory consumption of oil will overtake, and then will outstrip rates of discovering new reserves 
whereas already known reserves will start to be exhausted.  

In contrast to a widely discussed theory that world oil production will soon reach a peak and go into sharp decline, 
a new analysis of the subject by Cambridge Energy Research Associates (CERA) finds that the remaining global 
oil resource base is actually 3.74 trillion barrels -- three times as large as the 1.2 trillion barrels estimated by the 
theory’s proponents -- and that the “peak oil” argument is based on faulty analysis [CERA, 2006]. According to 
the study, the global production profile will not be a simple logistic or bell curve postulated by geologist M. King 
Hubbert, but it will be asymmetrical – with the slope of decline more gradual and not mirroring the rapid rate of 
increase - and strongly skewed past the geometric peak. It will be an undulating plateau that may well last for 
decades [CERA, 2006]. 

There are two important categories of oil reserves used in these studies: conventional and unconventional oil. 
Conventional oil refers to a reserves category that has supplied most to date and will likely to dominate oil supply 
far into the future. These reserves are relatively easy, cheap and fast to produce. Unconventional oil includes 
heavy oil category, dense and extremely viscous oils, as well as those produced from coal and immature source 
rocks. This category is characterized by a high resource base but a low extraction rate and net energy yield. 

Figure 10 shows CERA’s outlook for conventional and unconventional oil including several possible scenarios 
and peak oil theory.  

Here we are not interested in the accuracy and reliability of these forecasts; we are more interested in providing 
consistent mathematical tools for an independent expert to develop an individual prediction based on those from 
the study. These tools should allow the expert to express his/her preferences that would be reflected in the final 
scenario for the future dynamics of world oil reserves. We will use GIE method as such tools. The GIE framework 
will allow the expert to include the full spectrum of possible scenarios into the final estimation besides initial ones. 
The existence of those “intermediate” scenarios could be attributed to the uncertainties of the starting predictions 
as well as to limited number of models or experts involved in generation of those initial scenarios.  

To use GIE method an expert should construct PIEs for each time points of forecasts. According to figure 10, 
there are three initial forecasts – “Peak Oil”, “Conventional Oil”, “Unconventional Oil”, the forecasts sharply differ 
after year 2010. Therefore we quantified data from the figure to use them in a subsequent scenario analysis 
based on GIE, starting from 2010. At the preliminary stage of constructing GIE the expert can define at an every 
time point (year) the base interval being determined by the corresponding values of the most optimistic scenario 
(CERA, unconventional oil) - right point of the base interval, and the pessimistic (peak oil) scenario – left point of 
the base interval. The mini interval could be defined by introducing a 10% spread (± 5%) for the most realistic, 
from expert’s point of view, forecast (CERA, conventional oil) (figure 11). Naturally we might use PIE of triangle 
shape but the first option gives more diversity of initial scenarios.  
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Fig. 10. Wave plateau versus peak theory 
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Figure 11. Expert’s perspective on Peak or Plato 
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So for example at the point t = 2020 we have that the base interval is [71; 110.5] while the mini interval is [84.55; 
93.45]. Once the PIE structure is defined, the expert can express his/her beliefs by specifying probability density 
for distributions on the base and mini intervals for a current point t. Let us consider the case of rapid analysis 
when expert uses generalized uniform distribution as projection distribution.  
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Figure 12. Distributions of probabilities for the guaranteed levels of oil production 
 

Figure 12 shows curves of probabilities of the guaranteed values for world oil production for three time points - 
the years 2020, 2030, and 2040.  Analysis of these curves shows that for a confidence level of 0.9 the estimation 
of oil production is at least 80 million barrels per day for the year 2020, at least 73 million barrels per day for 
2030, and 67 million barrels per day for the year 2040. Estimation of the world oil production at the confidence 
level of 0.5 gives at least 87 million barrels per day for the year 2020, at least 90.5 million barrels per day for 
2030, and 90 million barrels per day for the year 2040. It is interesting to note that for the confidence level around 
0.7 the guaranteed value of the estimation for the world oil production is almost constant for years 2020-2040 and 
does not go bellow 82 - 83 million barrels of oil per day. 

Conclusion 

Adequate solutions of many complex real-life problems under uncertainty significantly depend on effective 
elicitation and formalization of expert knowledge on input parameters of used models. This requires specific 
methods for expert knowledge elicitation, interpretation and processing.  

Poly-interval representation and, specifically, Generalized Interval Estimations method seems to be promising 
approach to elicit and formalize expert knowledge on quantitative parameters in problems under uncertainty. This 
survey summarizes and further extends theoretical and practical aspects of GIE approach.  

Generalized Interval Estimation structure, being scenario-based expert knowledge representation, is analysis-
oriented, since it provides flexibility to add/remove/modify scenarios from expert description of estimated quantity. 
The practical example on projecting the dynamics of the world oil production illustrates possibilities that an 
independent expert could use to develop and analyze new scenarios based on initial set of forecasts available 
from relevant studies and research. 

Generalized Probability Tubes structure is more decision-oriented interpretation of expert knowledge, since for 
given decision makers’ confidence level it is able to represent the probability for estimated quantity to have a 
certain value. Oil reservoir evaluation example demonstrates this property of GIE approach, which, we believe, 
could be important for a wide variety of interdisciplinary problems including investment project evaluation, 
technology assessment, development of policies and regulations.  

Confidence Production not less than 

Level (Mln barrels per day) 

 2020 2030 2040 
0.9 78 72 67 
0.8 81 79 76 
0.7 83 83 82 
0.6 85 87.5 87 
0.5 87 90.5 90 
0.4 89 93.5 93.5 
0.3 91.5 97 97 
0.2 94 101 102 
0.1 99 107 108 
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We hope that GIE method may be applied also for analysis of other problems. Among them aggregation 
information concerning in input data of used models, comparison of PIEs and GIEs and others.  
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