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ON THE EXTERIOR PENALTY FUNCTION METHOD FOR THE CONSTRAINED 
OPTIMAL CONTROL PROBLEM FOR QUASILINEAR PARABOLIC EQUATIONS 

Mahmoud Farag 

 

Abstract: This paper presents the numerical solution of a constrained optimal control problem (COCP) for 
quasilinear parabolic equations. The COCP Is converted to unconstrained optimization problem (UOCP) by 
applying the exterior penalty function method. The numerical algorithm for solving UOCP using the conjugate 
gradient method (CGM) is given. The computing optimal controls are helped to identify the unknown coefficients 
of the quasilinear parabolic equation. Numerical results are reported. 

Keywords:  optimal control, quasilinear parabolic equations, penalty function method, finite difference methods. 
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Nomenclature and Notations 
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Introduction 

Optimal control problems for partial differential equations are currently of much interest. A large amount of the 
theoretical concept which governed by quasilinear parabolic equations has been investigated in the field of 
optimal control problems [Belmiloudi, 2004], [Ryu, 2004]. These problems have dealt with the processes of hydro- 
and gasdynamics, heat physics, filtration, the physics of plasma and others [Farag, 2004], [Iskenderov, 1974]. 
From the mathematical point of view, the definition and refinement of the unknown parameters of the model 
present the problem of identification and optimal control of partial differential equations. The importance of 
investigating the identification and optimal control problems was developed in [Lions, 1973], [Farag, 2003].   

This paper presents the numerical solution of a constrained optimal control problem (COCP) for quasilinear 
parabolic equations. The COCP Is converted to unconstrained optimization problem (UOCP) by applying the 
exterior penalty function method [Xing,1994]. The numerical algorithm for solving UOCP using the conjugate 
gradient method is given [Damean, 2000]. The computing optimal controls are helped to identify the unknown 
coefficients of the quasilinear parabolic equation. Numerical results are reported. 

The heat exchange process described by a partial differential equation of quasilinear parabolic type as follows: 
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On the set U  under the conditions (1)-(3) and additional restrictions 

 

211100 ),(,),(,),( rtxyruyZuy    (4) 

 

is required to minimize the function 
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The solution of the reduced problem (1)-(3) explicitly depends on the control u . Therefore, we shall also use the 
notation );,( utxyy  . Based on adopted assumptions and the results of [Ladyzhenskaya, 1973] follows that 

for every Uu  the solution of the problem (1)-(4) is existed, unique and UutxCyx  ,),(, . 

Optimal control problems of the coefficients of differential equations do not always have solution [Goebel, 1979]. 
In [Farag, 2003], we proved the existence and uniqueness of the solution of problem (1)-(5) as follows: 
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Lemma (1) 

At above adopted assumptions for the solution of the reduced problem (1)-(5) the following estimation is valid 
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Lemma (2): The function )(0 uJ is continuous onU . 

 

Theorem (1) : The problem (1)-(5) at any 0  has at least one solution. 

 

Theorem (2): The problem (1)-(5) at any 0  , at almost all NE  has a unique solution. 

 

UOCP and CBVP 

The inequality-constrained problem (1) through (5) is converted to a problem without inequality constraints by 
adding a penalty function to the objective (5), yielding the minimizing following function:  
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The problem (7) and (1)-(3) is called UOCP.  It is assumed that the following conditions are fulfilled: 

 

a)  The functions satisfy the Lipshitz condition for u . 

 

b)  The first derivatives of the functions ),(,),( uyZuy  with respect to u are continuous functions.  
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Theorem (3):  It is assumed that the above conditions are satisfied.  The function ),( tx   )(1,1
2 W  is a 

solution in of the following conjugate boundary value problem (CBVP) [Vassiliev, 1980] : 
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where y is the solution of problem (1)-(3) for Uu . 

 

For the sufficient differentiability conditions of the function  )(, um  , we have the following theorem: 

 

Theorem (4): It is assumed that the above conditions are satisfied. The function )(, um  is Frechet 

differentiable and its gradient satisfies the equality 
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where ),,( uyH   is the Hamiltonian function defining as follows 
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The Iterative Algorithm for Solving UOCP 

The following iterative algorithm is developed ( k   being iteration numbers). In view of relations (1)-(7) one 
considers the following iterative algorithm: 

Step 0:   Choose 0,0,,,1 21   NNcNc EVuk  
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Step 1:   Compute ),()( txY k , that is, the state system described by equations (1)-(4): 

Dxxxy

txtxFyuy
x

y
uy

xt

y

k

kkk
k

kk
k





















,)()0,(

),(,),(),(),(

)(

)()()(
)(

)()(
)(





Tttg
x

y
uytg

x

y
uy

lx

k
kk

x

k
kk 










0,)(),(),(),( 1

)(
)()(

0

0

)(
)()(   

 

Step 2:   Compute ),()( txk , that is, the adjoint state system described by equations (10)-(14) 
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Step 3:   Find optimal control )*(ku  using conjugate gradient method. 

 

Step 4:   Compute ),(,),( )*(
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Step 5:   If 2
*

2/1
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2/ ,   NcExactNcExact ZZ  then terminate the procedure, otherwise set 

1,2  kkNcNc and go to step 1. 

Numerical Results 

The problem (1)-(7) is considered as one of the identification problems on definition of unknown coefficients of 
parabolic quasilinear equation type. The numerical results were carried out for the following example of exact 
solution, input data:  
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In Fig. 1, the curves denoted by MaxL(y,u) and MaxZ(y,u) are the maximum absolute errors  
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It is clear the maximum absolute errors decrease as NtermsNc   increase. 

 

Fig. 1 : Number of terms versus  Max Absolute Error
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In Fig. 2, the curves denoted by Lexact and Loptimal ),( optimalExact   are the exact values and 

approximate values with the optimal control *u.  

By increasing Nc , ),( uy  will agree with the exact value. 

 

Fig.  2: Coefficients of QPDEs (Exact  &  Optimal)
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The values of )()(, uFum   versus the iteration numbers are displayed in Fig. 3. 

Fig.  3 : Iteration Number versus  F(u)
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