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LINEAR PROGRAM FORM FOR RAY DIFFERENT DISCRETE TOMOGRAPHY 
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Abstract: A special quality of discrete tomography problem solutions that requires the ray difference is 
considered. Two classes of reconstruction tasks of ),( 10 -matrices with different rows are studied: matrices with 

prescribed column and row sums and matrices with prescribed column sums only. Both cases are known as 
algorithmically open problems. We reformulate them as integer programming problems. Depending on 
parameters obtained, the Lagrangean relaxation model and then variable splitting technique, or a greedy 
heuristics approaches are applied for getting approximate solutions. In later case an optimization version is 
considered, where the objective is to maximize the number of pair-wise different row rays, which in case of 
existence of a matrix, is equivalent to the requirement of row differences.  
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Introduction 

Reconstruction algorithms that solve the so called inverse structural problems, have many applications in image 
processing, medicine, computer tomograph assisted engineering and design, electron microscopy, etc. There are 
a number of well known medical problems that require discrete reconstruction. For example, Onnasch and 
Prause [PrauseOnnasch, 1996] described an application of the discrete tomography technique, to routinely 
reconstruct the acquired biplane cardiac angiograms. Their model based reconstruction approach aims to recover 
the three-dimensional shape of the left or right chambers of the heart. In [SlumpGerbrands, 1982] Slump and 
Gerbrands presented a method based on a network flow approach that reconstructs the left ventricle of the heart 
from two projections. 

Reconstruction of discrete sets (finite subsets of the two-dimensional integer lattice) from given projections, - is 
one of the main tasks of Discrete Tomography.  Discrete sets can be presented as binary images. The line sum 
of a line through the image is the sum of the values of the points on this line. The projection of the image in a 
certain direction consists of all the line sums of the lines through the image in this direction. Any binary image with 
exactly the same projections as the original image is a reconstruction of the image. 

Opposite to methods of Computerized Tomography which use several hundreds of projections in Discrete 
Tomography a few projections are available. The main problem arising here is that the reconstruction task is 
usually extremely underdetermined, i.e. there may be many different binary images with the same projections. 

On the other hand for any set of more than two directions, the problem of reconstructing a binary image from its 
projections in those directions is NP-complete. For exactly two directions, the horizontal and vertical ones, it is 
possible to reconstruct an image in polynomial time. Already in 1957, Ryser found a necessary and sufficient 
condition for a pair of vectors being the horizontal and vertical projections of a discrete set ([Ryser, 1957]). In the 
proof of his theorem, Ryser also described a reconstruction algorithm. Another result of Ryser is the definition of 
the switching operation by which discrete sets having the same projections can be transformed into each other. 
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So, the problem of reconstructing a binary image from a small number of projections generally leads to a large 
number of solutions. To reduce the number of possible solutions, a priori information on the image being 
reconstructed is used.  Two special geometrical properties/constraints are often imposed, - convexity and 
connectivity:  

A matrix is horizontal convex (h-convex) if in every row the 1's form an interval, similarly, vertical convex (v-
convex), - when in every column the 1's form an interval; and a matrix is hv-convex if it is h-convex and v-convex. 
A matrix is connected if the set of 1's is connected with respect to the adjacency relation, where every pixel is 
adjacent to its two vertical neighbours and to its two horizontal neighbours. 

It is proven ([BarcucciDelLungoNivatPinzani,1996], [Woeginger,2001], [DurrChrobak,1999] that the existence 
problems of h-convex, v-convex, hv-convex matrices and the existence problem for connected matrices 
(polyominoes) are NP-complete; and the reconstruction problem for horizontal and vertical convex polyominoes 
can be solved in polynomial time.  

In [DahlFlatberg, 2002] G. Dahl and T. Flatberg consider a variant of reconstructing hv-convex (0,1)-matrices, 
where instead of requiring the ones to occur consecutively in each row and column, they maximize the number of 
neighboring ones. Then the problem is reformulated as an integer programming problem and a solution method 
based on variable splitting is proposed. 

We will consider another relevant concept in this context, - the requirement of different rows on matrix to be 
reconstructed. Two cases are studied with the requirement of row differences. First - reconstruction of ),( 10 -

matrices with prescribed row and column sums and different rows, and the second - reconstruction with 
prescribed column sums and different rows. Both are known as algorithmically open problems. The first problem 
we reformulate as an integer programming problem and use the Lagrangean relaxation and variable splitting 
technique for an approximate solution. Solving the second problem, we try to find in a constructive way a matrix 
with given parameters. Additionally we consider an optimization problem - instead of requiring all different rows, 
we maximize the number of different pairs of rows, which in case of existence of a matrix, is equivalent to the 
requirement of different rows. Then an approximation greedy algorithm is applied for constructing matrices with 
the maximum number of different pairs of rows.   

),( 10  matrices with different rows 

In this section we consider a special case of discrete tomography, - to reconstruct the ),( 10 -matrix with 

prescribed row and/or column sums and with all different rows.  

Consider a ),( 10 -matrix of size nm  . Let ),,( mrrR 1  and ),,( nssS 1  denote the row and column 

sums of the matrix respectively, and let ),( SRU  be the class of all ),( 10 -matrices with row sums R and column 

sums S . A necessary and sufficient condition for the existence of a ),( 10  matrix of the class ),( SRU  was 

found by Ryser. Now we formulate the two basic problems: 

P1. Existence of a ),( 10  matrix with the given row and column sums and with different rows 

Given integer vectors ),,( mrrR 1  and ),,( nssS 1 . Is there a binary matrix  }{ , jixX   in the class 

),( SRU  with different rows? 

P2. Existence of a ),( 10  matrix with the given column sums and with different rows  

Given an integer vector ),,( nssS 1 . Is there a binary matrix  }{ , jixX   with different rows whose column 

sums are given by ),,( nssS 1 ?   
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No polynomial algorithms are known for solving P1 or P2, and they are known as open problems. The 
combinatorial origin of P1 is the hypergraph degree sequence problem, where the complexity is open even for the 

case miri ,,, 13  . P2 comes from the n -dimensional unit cube subsets partitioning.  

Below in this section we reformulate P1 as an integer programming problem and show the way of use of integer 
programming techniques to find the approximate solutions.  

Let X  be a ),( 10 -matrix of size nm  . Obviously mirx i

n

j
ji ,,,, 1∑

1


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 and njsx j

m

i
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 are 

the row and column sums of the matrix.  

The requirement of row difference in X  which initially is a combinatorial property, will be presented algebraically, 
using the intersections of pairs of binary rows. Consider two rows 'i  and ''i  that have the same row sum r . If 
these rows are different, then they intersect (by 1s) in less than r  places. For determining the intersection size of 

this pair of rows we introduce additional n  binary variables jiipy ),'','( , so that these variable satisfy requirements 

)(&)()( ,'','),'','( 111  jijijiip xxy , where )'','( iip  indicates the number (enumeration) of pair )'','( ii . 

Obviously this summarized picture can be provided by the following conditions:  
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In these terms the row pair intersection size is presented by formula∑
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condition of distinction of these rows.  

Indeed such conditions are necessary for only pairs of rows with the same sum. It is satisfactory to separate the 
row pairs with equal sums imposing these restrictions only for such rows. Below, in fact, we prefer to compose a 
system of inequalities for all pairs of rows. 

Enumerate pairs of rows and let )'','( iip  is the number of the pair )'','( ii , for mii  '''1 . Assuming that 

mrr 1 , the requirement of different rows has been easily replaced with the following property: intersection 

size for each pair ( 'i , ''i ), mii  '''1  is less than row sum of ''i -th row. 

Now P1 can be formulated as follows: given the following system  
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where ),,( mrrR 1  and ),,( nssS 1  are integer vectors and mrr 1 . nmjixX  }{ ,  and 

nCji
m

yY


 2}{ ,  are unknown variables. Is there a ),( 10  solution to this system? 

Our immediate goal is to represent (P1) in the canonical form of a liner program instance: bAz  .  

First we explain the structure of vector z . z  is introduced as concatenation of two parts: x  and y : 
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z , with nCnm m  2 coordinates. 

Vector b  is a column vector consisting of several fragments: 1b , 2b , 3b , 4b , 5b , where 1b  and 2b  are 

transposed forms of S  and R  respectively, 3b  is 22 mCn  -length column vector consisting of all 0s and  4b  is 
2
mCn  -length column vector consisting of all 1s. 2

mC  components of 5b  are composed by the pairs )'','( iip , as 

the maximum values of ),( ''' ii rr .  213 mCnmn  )(  is the total length of vector b .  

Now compose the matrix A . It will have 213 mCnmn  )(  rows and nCnm m  2  columns and can be 

presented in form: 
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The structures of   )( nmnA 1   and   )( nmmA 2  is given below in figure 1  

   


       

 





 

(a)      (b) 

Fig.1 

(a) shows the placement of 1s in   )( nmnA 1  and (b) - in   )( nmmA 2 . 

  )( nCn m
B  21  and   )( nCm m

B  22  consist of all 0 components.  
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  )( nmCn m
A  223  and   )( nCCn mm

B  2223  consist of 2
mC  submatrices (vertically) of the following structures (one for 

each pair of rows )'','( ii ) given in figure 2.  
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(a)     (b) 

Fig.2 

(a) gives the placement of 1s in   )( nmCn m
A  223  and (b) - in   )( nCCn mm

B  2223 . 

 

Similarly,   )( nmCn m
A  24  and    )( nCCn mm

B  224  are the vertical concatenation of the following structures given 

below in figure 3 that are constructed for each pair of rows )'','( ii . 


'i "i

      




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(a)     (b) 

Fig.3 

(a) corresponds to   )( nmCn m
A  24  and (b) - to   )( nCCn mm

B  224 . 

 

  )( nmCm
A 25  consists of all 0 components and   )( nCC mm

B  225  has the form given in figure 4:   

2
mC

 

Fig.4 

 

Now 1A  and 2A  (with 1b  and 2b ) provide column and row sums respectively, - (1) and (2) conditions in (P1). 

3A , 3B  and 4A , 4B  (with 3b , 4b ) are composed for presenting intersections of row pairs, - (3). And finally, 5B  

with 5b  is to provide the condition (4), - row differences. 

Below in figure 5 we present the whole scheme. 

This sparse matrix codes the discrete tomography P1 problem in terms of integer linear programming. Several 
classes of integer programming are known solvable in polynomial time – problems with total unimodular matrices, 
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set network problem, etc. Matrix A  is not as simple but the given form helps to see and construct the appropriate 
relaxations to receive and apply approximate solution algorithms. 
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Fig.5 

 

Let us consider now also the problem P2 and the problem of representing it in a linear program system. 

Let X  be a ),( 10 -matrix of size nm   for problem P2.  njsx j
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i
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 provides the column sums of 

the matrix. For presenting the condition of different rows of X , we are considering the following representation of 

rows. i -th row of X , as a binary vector of size n  can be represented in form nii
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If two rows are different then the numerical values of the corresponding representations are different. We get the 
following system: 
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Enumerate pairs of rows and let )'','( iip  be the number of the pair )'','( ii . We introduce integer variables 
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Now P2 can be formulated in the following way: given the system  
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where ),,( nssS 1  is an integer vector and nmjixX  }{ ,  and 2
mCjyY }{  are unknown variables. Is there 

a solution of this system? 

In the same way as in the previous case, this system can be presented in form bAz  .   

Thus we get two cases of integer programming problems and now techniques of integer programming can be 
applied for solving them. First the linear programming relaxation is considered and experiments are done in 
existing linear programming software environment. The results were not adequate. Afterward an experimentation 
software system is created which provides an environment for treatment of combinatorial problems. In particular 
P1 and P2 are relaxed in Lagrangean manner and experimented for different classes of (0,1)-matrices. The 
results are satisfactory for a number of specific cases.     

Lagrangean relaxation and variable splitting for P1 and P2 

We consider Lagrangean relaxation of P1. There are many ways in which a given problem can be relaxed in a 
Lagrangean fashion. We will use variable splitting technique - we split our problem into separate vertical and 
horizontal subproblems, then the horizontal subproblem is further separated into subproblems for each pair of 
rows.  

We duplicate variables jix , , getting 2 independent sets of variables h
jix ,  and v

jix , , and then dualize the copy 

(duplication) constraint using Lagrangean multipliers ji , . 
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Split the problem into sub problems – horizontal and vertical: 
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Using similar reasons P1LR-h is then split into subproblems for each pair of rows. 

Further we apply an iterative procedure to find the optimisation coefficients ji , . On each iteration we consider  

2
mC +1 separate subproblems ( 2

mC  horizontal and 1 vertical).  

The obtained vertical and horizontal subproblems are simple and can be easily solved. Solutions of subproblems 
of this and similar kind are gathered in special library in the above mentioned experimentation software.  

An analog reasoning is true for P2 . 

Construction of a ),( 10  matrix with the given column sums and with different rows 

In this section we consider the problem P2 from another point of view. This time we look for a possible solution - 
by constructing a special solution/matrix which is in a specific standard format.  

Let an integer vector ),,( nssS 1 , msi 0 , ni ,,1  is given. If there exists an nm  ),( 10 -matrix 

with all different rows and with is  column sums, then after a finite number of row transpositions it can be 

transformed into the matrix with the same column sums, which has the “canonical form” – where each column 
consists of continuous intervals of 1’s (higher part) and 0’s (lower part) such that they split the intervals of the 
previous column in 2 parts. Therefore if P2 has a solution, it can be found (constructed) by algorithms which 
compose matrices in column-by-column fashion. We will refer to the construction version of P2 as P2-C. 

The first column is being constructed by allocating 1s  1’s to the first 1s  rows-positions followed by the 1sm   0’s 

in others. Two intervals is the result: – the 1s  interval of 1’s, and the 1sm   interval of 0’s. We denote these 

intervals 11,d  and 21,d . Hereafter the first index will indicate the number of column and the second – the number 

of interval within the column. Intervals with odd numbers consist of 1s, and intervals with even number consist of 
0s. So for the first column we have the following system: 
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We construct the second column putting 2s  ones and 2sm   zeros in 12,d , 22,d , 32,d  and 42,d  intervals such 

that 12,d  and 32,d  are filled by 1’s, and 22,d , 42,d  - by 0’s, and  
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0’s and 1’s accordingly, such that 
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So we formulate the following problem: 

Given a system of nnnn ddd
221 ,,, ,,,   variables 

 

(P2-C)
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Is there a solution of the system? As in previous cases we reformulate our problem as an integer programming 
task. But in this case we get s a system with the exponential number of variables. 

Below we will consider an optimization version of P2-C and bring an approximation greedy algorithm for its 
solution.    

During the construction of matrices in column-by-column fashion, partitioning of the intervals in each step can be 
performed by different ways - following different goals. Let assume that the partitioning of intervals aims to 
maximize some quantitative characteristics, which leads to the matrices with different rows in case when the later 
exists. One of such characteristics - the number of pairs of different rows – is considered in [S, 1995]. An 
approximation greedy algorithm, which constructs the target (0,1)-matrices in the above described column-by-
column fashion of partitioning is considered. The algorithm provides the optimal construction of each column – i.e. 
the construction, which provides the maximal number of new ),( ji  pairs of different rows in each step. It is 

proven that the optimal construction of each column is provided by partitioning, which distributes the difference 

)( kk sms   “homogeneously” on all current non atomic intervals. 
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