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Abstract: An approximation greedy algorithm is considered for reconstruction of (0,1)-matrices with different 
rows. Numbers of pairs of different rows is taken up as a quantitative characteristic, maximization of which, when 
appropriate, leads to matrices with different rows. Properties of the algorithm are studied and the performance is 
evaluated based on series of experiments.  
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Introduction 

),( 10 -matrices with prescribed row and column sums is a classical matter which appears in many branches of 
applied mathematics. There is a known result by Ryser for a pair of vectors being the row and column sums of a 
(0,1)-matrix ([R, 1957]). (0,1) matrices with given row and column sums and with special geometric 
properties/constraints are addressed for example in [DCh, 1999], [BDLNP, 1996], [W, 2001].  

Consider the n  dimensional unit cube. Vertices of the cube are coded by n -tuples of 0,1 values, and in this way 
any vertex subset has been presented as a ),( 10 -matrix, where rows correspond to vertices and thus all rows are 
different. Row sums indicate the layers of the cube containing the corresponding vertices. i -th column sum 
identifies the number of vertices in the vertex subset with 1 value in i -th position. Let ),,( mrrR 1=  and 

),,( nssS 1=  denote the row and column sum vectors of a ),( 10 -matrix of size nm × . Now existence of 

such matrix is equivalent to the existence of m  vertices situated in 1r -th, 2r -th, etc. mr -th layers such that 1s  

vertices/tuples contain 1 in the first position, 2s  vertices contain 1 in the second position, etc. and ns  vertices 

contain 1 in the n -th position. In other words is  and ism −  are partition sizes of the vertex subset on i -th 
direction. In case when the particular positions of vertices are not important and we are just interested in 
existence of vertex subsets that have given partition sizes – we search out a subclass of matrices with column 
sums ),,( nssS 1=  and with m  rows which are different. Both cases (with or without ),,( mrrR 1= ) are 
known as algorithmically open problems (no polynomial algorithm is known). 

For the problem with ),,( nssS 1=  and m  a greedy algorithm was proposed in [S, 2010 G], which is proven 
to be optimal in local steps. The current research intends to evaluate performance of this algorithm. Series of 
experiments made for this purpose, taking into account special properties of the algorithm. We propose that the 
given greedy algorithm performs a rather good partitioning of matrix columns. For ),,( nssS 1=  and m , 
supposing the existence of row different matrices, greedy algorithm leaves at most 2 length intervals. 
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),( 10  matrices with different rows 

Consider a ),( 10 -matrix of size nm × . Let ),,( mrrR 1=  and ),,( nssS 1=  denote the row and column 

sum vectors of the matrix respectively, and let ),( SRU  be the class of all ),( 10 -matrices with row sum R  and 

column sum S . Clearly msi ≤≤0  for ni ≤≤1  and nri ≤≤0  for mi ≤≤1 . A necessary and sufficient 

condition for existence of ),( 10  matrices in the class ),( SRU  was found by H. J. Ryser. In difference to this 

case we consider a specific subclass of ),( SRU  where all the rows of matrices are different, and in particular, 

we will consider the class )(SU  of all ),( 10 -matrices with column sum ),,( nssS 1= and with m  rows that 
are all different. 

Now we formulate two basic postulations related to the problem posted:  

(P1) Clarify the Existence issue of ),( 10  matrices in )(SU , 

(P2) Construct ),( 10  matrix or matrices in class )(SU . 

 

We will address, mainly, the construction issues, (P2). Consideration includes also the approximate case and in 
this context it is reasonable to introduce quantitative characteristics, so that optimized values of such 
characteristics lead to matrices with different rows in case when the latter exist. As such measure we consider 
“number of pairs of different rows” and its maximum – which was first considered in [S, 1995]. If )(Sℑ  denotes 

the class of ),( 10 -matrices of size nm ×  having column sum vector  )1 nssS ,,( =  (in this way 

)()( SSU ℑ⊆ ), then 2
mC  is the maximum possible number of the pairs of different rows for matrices of )(Sℑ . 

This maximum is achieved for matrices of )(SU .  

Therefore, if )(SU  is not empty, then a matrix )(SM ℑ∈  with maximum number of pairs of different rows will 

solve the existence problem (P1). In general, when the maximum value is less than 2
mC , then this is an indication 

that )(SU  is empty. Thus, further we will consider the modified postulation: 

(P2') Construct ),( 10 matrices with m  rows and the given column sum, that 
have maximum number of pairs of different rows. 

 

The requirement of different rows implies a simple restriction on number of possible rows: nm 2≤ .  

Below we bring some statements/properties from [S, 2009, S, 2010] that we take into account during the 
experiments. 

 

Lemma 1 [S, 2010]. Suppose that ),,( nssS 1=  is the column sum vector for some nm × - matrix with 

different rows. Then there exists a nmn ×− )(2 -matrix with different rows such that 

),,( n
nn smsm +−+− −− 1

1
1 22   serves as its column sum vector.  

This is a simple but useful property. It says: regardless the issue (existence, construction or characterization of 
column sum vectors), it is sufficient to consider the case 12 −≤ nm .  
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Lemma 2 [S, 2009]. Assume that )(SU  is not empty for a given ),,( nssS 1=  and suppose that 2/msk >  

for some k . Then )'(SU  is not empty as well for )11 nk sssS ,,,,('  −= . 

Greedy algorithm for solving (P2') 

The greedy approach is a recursive execution of a procedure that minimizes/maximizes the increase of the 
objective function.   

Now we describe an algorithm G  that constructs a matrix column by column: starting from the first one and 
adding a column in each step. The objective function is D: →ℑ∈ )(SA ”number of pairs of differing rows of A ”; 

and the goal is to construct a matrix with the greatest possible value of D, that is )(SAopt ℑ∈  such that 

)(max)(
)(

ADAD
SAopt ℑ∈

= . Let GA  denote a matrix constructed by G  and let kGA ,  is the matrix at the k -th step 

of G  (in this way GnG AA =,  ) . )( ,kGAD∆  denote the increase of objective function during the k -th step of G , 

that is: )()()( ,,, 1−−=∆ kGkGkG ADADAD . 

Algorithm G  

Step1. First column consists of 1s  ones placed in the first 1s  rows-positions followed by 1sm −  zeros in others. 

Two intervals are the result: – the 1s -length interval of ones, and the ( 1sm − )-length interval of zeros. We 

denote these intervals by Gd 11,  and Gd 21, . Hereafter the first sub-index will indicate the number of column and the 

second – the number of interval within the column. So construction of the first column is in unique way: 







=

=+

111

2111

sd

mdd
G

GG

,

,,   

A pair of rows consists of identical when they belong to the same interval; otherwise it consists of differing rows. 
Therefore the first column will produce GG dd 2111 ,, ⋅  pairs of different rows. So the increase of objective function is: 

GG
G ddAD 21111 ,,, )( ⋅=∆ . 

Let we have constructed the first 1−k  columns. In general, )( 1−k -th column consists of 12 −k  intervals filled 
by ones and zeros accordingly. Since among them 0-length intervals are possible and they cannot be used 
anymore, let us assume that the )( 1−k -th column consists of p  non-zero length intervals denoted by 

G
pk

G
k

G
k ddd ,,, ,,, 12111 −−−  . Recall that the rows coincide within the intervals and differ otherwise. If in some column 

j  we get all one length intervals, then at this moment non repetition of all rows, and hence the maximum number 
of pairs of different rows is already provided. Further constructions can be arbitrary.  

 

Step k. During this step each G
ikd ,1−  length interval will be partitioned into G

ikd 01 ,,−  and G
ikd 11 ,,− length intervals 

filled by zeros and ones respectively: G
ik

G
ik

G
ik ddd 1,,10,,1,1 −−− +=  such that 

∑
=

− −=
p

i
k

G
ik smd

1
01 ,,  and ∑

=
− =

p

i
k

G
ik sd

1
11 ,, .  
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The increase of objective function during the k -th step is: 

∑
=

−− ⋅=∆
p

i

G
ik

G
ikkG ddAD

1
0111 ,,,,, )( .  

We will release partitions to minimize the length differences of intervals.  

The idea is in following: if nksms kk ,,, 1=−= , then in each step we would split every interval into 2 equal 
( 1±  in case of odd) parts and fill by zeros and ones respectively which will lead to all one length intervals in 
logarithmic number ([K, 1973]) steps. Furthermore, among all integer partitions of G

ikd ,1− : 
G

ik
G

ik
G

ik ddd 01111 ,,,,, −−− += , the largest product G
ik

G
ik dd 0111 ,,,, −− ⋅  is achieved when G

ik
G

ik dd 0111 ,,,, −− = . Thus following 

this strategy would bring to the goal, but in general at each step k  we have )( kk sms −−  extra ones (or 

kk ssm −− )(  extra zeros). Trying to be closer to equal lengths of intervals we 1) distribute the extra 

)( kk sms −−  ones (or kk ssm −− )(  extra zeros) among intervals keeping a “homogeneous” distribution; 
and then 2) split the remaining intervals into 2 equal parts – putting equal number of zeros and ones.  

The lengths of intervals/partitions and their parity will be the same independently of occurrence of extra ones or 
extra zeros. Thus without loss of generality we may assume that nisms ii ,, 1=−≥ . 

Now describe the process in detail. 

Let )( kkk smsr −−=  and assume that there are l  odd length intervals among the intervals of )( 1−k -th 

column. It is easy to check that kr  and l  have the same parity and hence lrk −  is an even number. 

Construction of the k -th column is in 2 phases: distribution of kr  “extra” ones during the first, and distribution of 
remaining ones during the second phases. 
 

1) phase 

a) lrk ≤  

Chose arbitrary kr  intervals among the l  odd intervals and put a 1 in each.  

b) lrk >  

All l  odd intervals get a 1. After this we put ones two by two in intervals starting from the intervals of even length 
then altering from odd to even, and continuing the process until all kr  ones have been exhausted. If during the 
process some short intervals have been filled, they do not participate any longer. Let  T  denote the maximum 
length of those intervals filled during this process. It is worth to mention that after putting l ones on odd intervals, 
we get all even lengths, and lrk −  is even as well, so in this way the process of distribution is correct. After this 
phase there remain equal numbers of zeros and ones. 
 

2) phase 

a) lrk ≤  

Half of the remaining krl −  odd intervals get one 0, others – one 1, after that all intervals have been split into 
equal parts and receive equal number of zeros and ones. 
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 b) lrk >  

all intervals have been split into equal parts and receive equal number of zeros and ones. 

 

Let ic  indicates difference between the distributed ones and zeros on i -th interval: 

piddc G
ik

G
iki ,,,,,,, 111

0111 =−= −− .  

Thus on k -th column lengths of partitions are the following: 
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1

1

1

1 1
01

1
11

i
G

ikG
ik

i
G

ikG
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cd
d

cd
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−
=

+
= −

−
−

−
,

,,
,

,, ,  filled by 1 and 0 respectively for pi ,,1= . Each of the 

intervals may be of 0-length. It is worth to mention that: 2≤− ||max
, jiji

cc  for all ji,  pairs of even )( T≥ -

length and odd )( 1+≥T -length intervals. 

 

Note. The need to choose some quantity of even (odd) intervals among all even (odd) intervals will cause 
branching during the first phase in case of lrk > . This may bring not uniqueness in constructions.  

Nevertheless all branches maximize the increase of the pairs of different rows in each local step.  

 

If the n -th column consists of only 1-length intervals then algorithm G  produces a matrix with different rows. 
Otherwise within intervals of greater lengths – rows are coinciding.  

 
Theorem 1 

(1) Each step of the algorithm G  is optimal: it provides the maximum increase of the objective function 
– pairs of differing rows; 

(2) All optimal constructions in each column are those according to G . 
However algorithm G  does not provide the global optimum.  

 

Properties of G  

In this section we study properties of G .  

For a given vector )1 nssS ,,( = consider the class )(SU  of all ),( 10 -matrices with column sum 

),,( nssS 1= and with m  rows which are all different. Suppose that )(SU  is not empty and )(SUA∈ . 
Interchanging ones with zeros in some column i  of A  will not produce repeating rows and hence it will lead to a 
matrix iA  that belongs to the class )( iSU  where ),,,,( ni

i ssmsS  −= 1 . So A  is easily transformable to 
iA  and vice versa. Thus having a goal the existence/construction issues in )(SU  we assume without loss of 

generality that all 2/msi ≥ . Concerning the order of components of S , - it is not important while considering 
the existence problem. As regards the construction process, it may have an influence. However we will study 
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properties of the algorithm assuming that nss ≥≥1 . Thus hereafter in this paper we will assume that 

nss ≥≥1  and 2/msi ≥  for ni ,,1= . 

Below we will prove a property of algorithm G  consisting in following:  

 

Theorem 2. If for a vector )1 nssS ,,( =  algorithm G  constructs a matrix from )(SU , and 2/msk >  for 

some k , then G  constructs also a matrix from )'(SU , where )11 nk sssS ,,,,('  −= 1

)(SU

. 

 

While Lemma 2 states that “good” vectors supporting existence of matrices in  are those having coordinate 
values close to 2/m , the theorem 2 confirms that these are “good” also from the point of view of construction by 
G .   

 

Before proving the theorem we bring some notes/properties concerning the constructions of algorithm G  taking 
into account the order nss ≥≥1 : 

Quantities of intervals increase from column to column - it is obvious. 

Quantities of odd intervals do not decrease from column to column - indeed, each odd interval being split 
produces one odd interval and each even interval produces 0 or 2 odd intervals. 

If during the construction of some column an interval (say length d ) receives some number of extra 1s  (say c ) 
then all partitions of d  in the consequent columns receive c≤  extra 1s (independent of size of partition) - this 
follows from the constructions. 

 

Now let us prove Theorem 2. 

G  constructs a matrix from )(SU  means that on the n -th column it receives all 1-length intervals. Now we 

prove that starting with )11 nk sssS ,,,,('  −= , G  will construct all 1-length intervals as well. 

The first 1−k  columns constructed by G  are the same for S  and 'S . Now consider constructions of the k -th 
columns by ks  and 1−ks  respectively (denoted them by )( ksG  and )( 1−ksG ) and convince that in the latter 

case it will bring to a matrix from )'(SU . It is worth to mention that 1+> kk ss . 

Assume that there are l  odd length intervals in )( 1−k -th column and kr  is the difference between ones and 

zeros for the k -th column: )( kkk smsr −−= . kr  and l  have the same parity and hence lrk −  is even 

number. k -th column had been constructed in 2 phases: distribution of kr  “extra” ones during the first, and 
distribution of remaining ones during the second phases. 

Now let kr '  denote the new difference: 211 −−−=−−−−= )())(()(' kkkkk smssmsr  so 2−= kk rr ' .   

                                                           
1 If equal components exist in S  then choosing 2/msk >  to decrease it by 1, we take the last such coordinate keeping the 

vector )11 nk sssS ,,,,('  −=  ordered decreasingly.  
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We will follow constructions of k -th column for both kr  and 2−kr  extra ones, and compare the lengths of 
intervals. 

Consider possible cases: 

a) lrk ≤  hence lr k ≤'  

Constructions and reasoning are the same as for ks : 

Phase 1 

Chose arbitrary kr '  intervals among the l  odd intervals and put a 1 in each.  

Phase 2 

Half of the remaining krl '−  odd intervals get one 0, others get one 1, after that all intervals have been split into 
equal parts and receive equal number of zeros and ones. 

Lengths had not been changed and hence constructions of remaining columns will be the same which leads to a 
matrix from )'(SU . 

 

b) lrk >  

Since lrk −  is even number, then 2≥− lrk . Consider cases: 

1. lr k ≤'  

It follows that lr k =' . This means that allocating 1 to each odd interval, all kr '  extra ones are exhausted in 

)( 1−ksG : 

Phase 1 
All l  odd intervals get a 1 value.  

Phase 2 
All intervals have been split into equal parts and receive equal number of zeros and ones. 

 

Meanwhile in )( ksG  two extra 1s remained for distributing among even intervals.  

 

We denote by d  the length of an even interval which received two extra 1s in )( ksG . Since other lengths are 

the same in both )( 1−ksG  and )( ksG , we will follow only partitions of d . 

      1222 +=+ //)( dd  

)( ksG :     d  

  1222 −=− //)( dd  

      2/d       (1) 

)( 1−ksG : d  

  2/d        
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Consider cases: 

 2/d  is odd 
Then 12 +/d  and 12 −/d  are even.  

Since the order of coordinates in S  is decreasing and 1+> kk ss , then in both cases these intervals do not 

receive extra ones. In )( 1+k -th column we get the following partitions coming from d : 

)( ksG : 212 /)/( +d , 212 /)/( +d , 212 /)/( −d , 212 /)/( −d , and  

)( 1−ksG : 212 /)/( +d , 212 /)/( −d , 212 /)/( +d , 212 /)/( −d .  

So – they bring to the same lengths. 

   

 2/d  is even 

12 +/d and 12 −/d  are odd. 

In )( 1+k -th column we will get: 

)( ksG : 2112 /)/( ++d , 2112 /)/( −+d , 2112 /)/( +−d , 2112 /)/( −−d , and  

)( 1−ksG : 4/d , 4/d , 4/d , 4/d . Thus: 

                   14 +/d  
)( ksG :      2/d  

                 14 −/d  

                    4/d       (2) 
)( 1−ksG : 2/d  

                4/d        

Depending on parity of 4/d , the process will be continued altering within the above cases. It stops in some 
column )( tk +  where )/( td 2  is the first odd length and in this way the interval lengths for )( ksG  and 

)( 1−ksG  are the same. Otherwise qd 2=  for some q  and process stops in )( qk +  column where all 

lengths are 1. It will happen before the column n , since by assumption G  constructs a matrix from )(SU . 

 

2. lr k >'  

 

Phase 1 
All l  odd intervals get a 1. After this we put ones two by two in intervals starting from the intervals of even length 
then altering from odd to even, and continuing cyclically until all kr  ones have been exhausted.  

Phase 2 
all intervals have been split into equal parts and receive equal number of zeros and ones. 

 

Suppose that phase 1 stopped on odd intervals: 



International Journal "Information Technologies & Knowledge" Vol.5, Number 1, 2011 

 

63 

)( ksG : t  of odd intervals received c  extra ones ( c  is odd), others received 2−c  or filled completely, even 
lengths either received 1−c  or are filled; 

)( 1−ksG : 1−t  odd intervals received c  extra ones, others received 2−c extra ones or filled completely, 
even lengths either received 1−c  or filled.  

We denote by d  the length of an odd interval which received extra two 1s in )( ksG . Since other lengths are the 

same in both )( 1−ksG  and )( ksG , we will follow only partitions of d . 

 

)( ksG :     d   2/)( cd +  
 2/)( cd −  

)( 1−ksG : d   1222 −+=−+ /)(/)( cdcd  
 1222 +−=−− /)(/))(( cdcd  

 

Phase 1 stopped on even intervals:  

)( ksG : q  of even intervals received c  ( c  is even) extra ones, others received 2−c  or filled completely, odd 
lengths either received 1−c  or filled; 

)( 1−ksG : 1−q  even intervals received c  extra ones, others received 2−c extra ones or filled completely 
and odd lengths received 1−c  or filled.  

We denote by d  the length of an odd interval which received the extra two 1s in )( ksG . Other lengths are the 
same. The picture is as in previous case. 

    

For easy construction we bring the details of the following particular case. In general, the reasoning is in an 
analogous way. 

 

Suppose that kr '  is just the number of odd intervals + 2 times the number of even intervals.  

Phase 1 
All odd intervals get a 1 and all even intervals get two 1s. 

Phase 2 
All intervals have been split into equal parts and receive equal number of zeros and ones. 

 

Then one interval receives 3 extra 1s in )( ksG . We denote by d  the length of this interval. Again other lengths 
are the same and we will follow only partitions of d . 

 

)( ksG :     d   12123 ++=+ /)(/)( dd  
 12123 −−=− /)(/)( dd  

)( 1−ksG : d   21 /)( +d  
 21 /)( −d  
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Consider cases: 

21 /)( +d  is odd and 21 /)( −d  is even. 

Then 121 ++ /)(d  is even and 121 −− /)(d  is odd.  

Since 1+> kk ss , then the number of extra ones decreased by two and taking into account that the number of 
odd intervals did not decrease, we make the following conclusion: in both cases all odd intervals get at most one 
extra 1 in both cases. Even intervals will get either 2 or 0 extra ones (we will assume that the same intervals in 
both cases get the same amount of extra ones).  

First consider case of 0 extra ones on even intervals. So in )( 1+k -th column we get the following partitions 
coming from d : 

)( ksG : 2121 /)/)(( ++d , 2121 /)/)(( ++d , 21121 /)/)(( +−−d , 21121 /)/)(( −−−d   

)( 1−ksG : 2121 /)/)(( ++d , 2121 /)/)(( −+d , 41 /)( −d , 41 /)( −d . 

So the lengths are: 

)( ksG : 141 +− /)(d , 141 +− /)(d , 41 /)( −d , 141 −− /)(d   

)( 1−ksG : 141 +− /)(d , 41 /)( −d , 41 /)( −d , 41 /)( −d  . 

Thus all intervals of )( 1+k -th column are the same in both )( ksG and )( 1−ksG except the following lengths: 

141 +− /)(d  and 141 −− /)(d  in )( ksG ; 41 /)( −d  and 41 /)( −d  in )( 1−ksG .  

The continuations are as in (2). 

Now consider the case of 2 extra ones on even intervals. Partitions in )( 1+k -th column coming from d  are the 
following:  

)( ksG : 22121 /)/)(( +++d , 22121 /)/)(( −++d , 21121 /)/)(( +−−d , 21121 /)/)(( −−−d   

)( 1−ksG : 2121 /)/)(( ++d , 2121 /)/)(( −+d , 2221 /)/)(( +−d , 2221 /)/)(( −−d   

So all intervals in )( 1+k -th column are of the same length except the following: 

)( ksG : 241 +− /)(d  and 41 /)( −d     

)( 1−ksG : 141 +− /)(d  and 141 +− /)(d . 

Continuations are in analogous way. 

 

21 /)( +d  is even and 21 /)( −d  is odd. 

Then 121 ++ /)(d  is odd and 121 −− /)(d  is even.  

This is similar to previous cases. 
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Evaluation of Results – Experiments 

Before experimental treatment of algorithm G  we refer to a special subset of )(SU , - class of matrices with 
column sums obeying the property of being a “boundary vector”. 

Definition [S, 2009]. Let mψ  denote the set of all vectors ),,( nssS 1=  with msi ≤≤0 ,  such that )(SU  is 

not empty. Vector mS ψ∈


 is called an (upper) boundary vector for mψ  if no vector greater than S


 belongs 

to mψ . 

Further the boundary vectors are found among the vectors that correspond to monotone Boolean functions. 

It follows from the Theorem 2 that more “difficult” vectors for the algorithm G  are boundary ones. Thus for 
estimation of the performance of G  it is reasonable to address this set of vectors.  

All monotone Boolean functions are composed for 6=n  with 121 −= nm ,,   one values. For example for 
28=m  there are 390050 functions. Corresponding column sum vectors are calculated. As different matrices 

may have the same column sum vector, there were repetitions among them. Besides, only vectors with 
decreasing order of coordinates are taken. Because algorithm G  is sensitive to this order, it may depreciate the 
ability of algorithm. Further in case of branching in some column, among all possible partitions only one is 
selected (an arbitrary choice), that also may decrease abilities of the algorithm. However all these steps simplify 
the calculations.  

Algorithm G  succeeds if in the last column of constructions only one length intervals occur. Experiments show 
that for some cases in the last column there remain 2-length intervals, in most cases only one such interval is 
present. Table 1 shows the result.  

Table 1. 

Number 
of rows 

Number 
of 

vectors 

One 2-
length 
interval 

More 2 
length 

intervals 
Number 
of rows 

Number 
of 

vectors 

One 2-
length 
interval 

More 2 
length 

intervals 
<12  0 0 22 172 59 1 
12 23 5 0 23 193 63 3 
13 30 5 0 24 214 90 2 
14 41 11 1 25 232 99 3 
15 51 11 0 26 255 119 2 
16 69 18 0 27 265 108 5 
17 83 26 1 28 290 134 5 
18 97 33 1 29 287 119 11 
19 115 34 0 30 287 159 3 
20 134 40 1 31 284 121 15 
21 149 44 1 32 253 0 0 

 

Besides the case 6=n ,  special “bad” vectors are composed from the point of view of the algorithm G  where: 

- decrease order is the worst for the given vector 

- there is only one successful choice of partitioning  in case of branching, and we didn't take it, etc.  
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On the other hand series of easy constructible monotone Boolean functions are considered in up to 11 
dimensional unit cubes and column sums are calculated for corresponding ),( 10 -matrices. The result of 

performance of algorithm G  for all these vectors remained unchanged: there are no intervals of 2>  length in 
the last column. 

At this moment it is only a supposition based on experiments that algorithm G  will not produce matrices 
with 2> -length intervals in the last column. Further efforts are required to prove or reject this supposition. 
However assuming true, this property let us estimate the performance of G . 

The worst case with this assumption is a matrix with all 2-length intervals in the last column. This implies 2/m  
pairs of coinciding/repeating rows in the matrix. Denote by Gm  the number of different rows by G  and taking 

into account that there are 2
mC  different pairs of rows in matrices with m  different rows, we get 

)(///)( 22221 −=−−= mmmmmmG . Let optA  be an optimal algorithm constructing target matrices and 

hence 21 /)( −= mmm
optA . Compose the performance ratio:  

2
11
−

+=
mm

m

G

Aopt .  
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