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Abstract: In this paper, we describe intelligent methods and technologies for environmental risks assessment 
using geospatial data. The risk assessment process is based on fusion of data acquired from different sources: 
models, in-situ observations and remote sensing instruments. The ensemble approach is used for data 
processing. Several real-world applications are described to demonstrate efficiency of the proposed approach, 
namely numeral weather prediction (NWP), land biodiversity assessment, vegetation state assessment, fire 
monitoring and flood mapping. These applications are being implemented within international projects within the 
UN-SPIDER Regional Support Office (RSO) in Ukraine. 
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Introduction 

At present, global climate changes on the Earth made rational land use, environmental monitoring, and prediction 
of natural and technological disasters the tasks of great importance. The basis for the solution of these crucial 
problems lies in integrated use of multisource data of different nature, in particular modelling data, in-situ 
measurements and observations, and indirect observations such as airborne and spaceborne remote sensing 
data [GEOSS, 2005]. 

In particular, models can be used to fill in gaps in data by extrapolating and estimating necessary parameters to 
the site of interest, to better understand and predict different processes occurring in the atmosphere, land, ocean 
and sea. The models can also help to interpret measurements and to design new observing systems. In-situ 
measurements are often used for calibration and validation of modelling and remote sensing data, and usually 
assimilated into models. Satellite observations have an advantage of acquiring data for large and hard-to-reach 
territories, as well as providing continuous and human-independent measurements. Many important applications 
such as environmental monitoring, agriculture monitoring, monitoring and predictions of natural disasters heavily 
rely on the use of Earth observation (EO) data from space. For example, both spaceborne microwave and optical 
data can provide means to detect drought conditions, estimate drought extent and assess the damage caused by 
the drought events [Kogan et al, 2004; Wagner et al, 2007]. To assess vegetation health/stress, which is 
extremely important for agriculture applications, optical remote sensing data can be used to derive biophysical 
and biochemical variables such as pigment concentration, leaf structure, water content at leaf level and leaf area 
index (LAI), fraction of photosynthetically active radiation absorbed by vegetation (FPAR) at canopy level [Liang, 
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2004]. The satellite-derived flood extent [Kussul et al, 2011] is very important for calibration and validation of 
hydraulic models to reconstruct what happened during the flood and determine what caused the water to go 
where it did [Horritt, 2006]. Information on flood extent provided in the near real-time (NRT) can also be used for 
damage assessment and risk management, and can benefit to rescuers during flooding. 

The EO domain is characterized by the large volumes of data that should be processed, catalogued, and 
archived [Shelestov et al, 2006]. The processing of satellite data is carried out not by the single application with a 
monolithic code, but by the distributed applications. This process can be viewed as a complex workflow that is 
composed of many tasks: geometric and radiometric calibration, filtration, reprojection, composites construction, 
classification, products development, post-processing, visualization, etc. Dealing with EO data, we have to also 
consider the security issues regarding satellite data policy, the need for processing in NRT for fast response 
within international programs and initiatives, in particular the International Charter “Space and Major Disasters” 
and the International Federation of Red Cross. It should be also noted that the same EO data sets and derived 
products can be used for a number of applications. For example, information on land use/change, soil properties, 
and meteorological conditions is important for droughts identification, vegetation state assessment and floods. 
Therefore, once we develop interfaces to discover and access the required data and products, they can be used 
in a uniform way for different purposes and applications. This represents one of the important tasks that are 
being solved within the development of the Global Earth Observation System of Systems [GEOSS, 2005] and 
European initiative Global Monitoring for Environment and Security [GMES, 2008]. Services and models that are 
common for different EO applications (e.g. flood monitoring and crop yield prediction) are shown in Figure 1. 

 

 
 

Figure 1. Common services and models for different applications 
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A considerable need therefore exists for intelligent methods and appropriate technologies that will enable the 
integrated and operational use of multi-source heterogeneous data for different application domains, and in 
particular environmental risk assessment. 

In this paper, we describe intelligent methods and technologies for environmental risks assessment using 
geospatial data. The risk assessment process involves a fusion of data acquired from different sources: models, 
in-situ observations and remote sensing instruments. Several real-world applications are described to 
demonstrate efficiency of the proposed approach, namely numeral weather prediction (NWP), land biodiversity 
assessment, vegetation state assessment, fire monitoring and flood mapping. Most of these applications are 
being implemented within international projects within the UN-SPIDER Regional Support Office (RSO) in Ukraine 
(http://un-spider.ikd.kiev.ua). 

Environmental Risk Assessment using Geospatial Information 

Usually, risk represented as a combination of the likelihood of an occurrence of a hazardous event or 
exposure(s) and the severity of injury or ill health that can be caused by the event or exposure(s) [OHSAS, 
2007]. Mathematically, risk R often simply defined as a function f of disaster probability and expected loss 
(hazards): R = f(probability, loss). 

Event probability could be estimated using a neural network (forecast) model [Haykin, 1999] based on data 
acquired from remote and in-situ observations (data fusion approach) [Kussul et al, 2009]. To identify the neural 
forecast model we use risk functional minimization theory developed within a theoretical framework known as 
computational learning theory [Bishop, 2006] or statistical learning theory [Vapnik, 1998]. Within this approach 
there are three types of empirical risk minimization problems: classification problem, regression retrieval problem 
and problem of indirect experiments interpretation. For each of the problems a specific loss function is 
determined. 

To estimate event probability density function information from different sources is integrated (Figure 2). 
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Figure 2. Event probability density estimation from multisource data using ensemble approach 
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Each classifier (can also be referred as an expert) provides an opinion on the event using corresponding data 
source (geospatial information, point observations). Their outputs are combined through a generalized rule F. 
Such a framework is known as a mixtures-of-experts model [Jacobs et al, 1991]. In the following sections we 
describe how multisource data are combined using this approach for applied problems solving in different 
domains. 

Applications 

Numerical Weather Modelling (NWP). Prediction of meteorological parameters represents one of the core 
services for a number of applications (e.g. floods, droughts, agriculture, etc). Currently, we run the Weather 
Research and Forecasting model (WRF) [Michalakes et al, 2004] in operational mode for the territory of Ukraine. 
The meteorological forecasts are generated every 6 hours with a spatial resolution of 10 km. Forecast range is 
for 72 hours in advance. The horizontal grid dimension is 200 by 200 cells with 31 vertical levels. We use 
forecasts from the Global Forecasting System (NCEP GFS) for boundary conditions. This data is available via 
Internet though the National Operational Model Archive & Distribution System (NOMADS). 

The workflow of the model run is composed of the following steps: data acquisition; data pre-processing, 
computation of forecasts using WRF model and data post-processing; visualization of the predicted parameters. 

To run WRF model, it is necessary to obtain boundary and initial conditions for the territory of Ukraine. This data 
can be extracted from the GFS model forecasts. To get the required data, the dedicated script was developed. 
This script downloads global forecasts every 6 hours. To decrease the data volume, our script uses a special 
Web-service capable of selecting subsets of the GFS data for the territory of Ukraine. The acquired data is 
transferred to the storage subsystem and marked as unprocessed (i.e. it has to be processed by the WRF 
model). After the GFS data has been downloaded, the Karajan script initialises a workflow for data pre-
processing, WRF run, and data post-processing. 

Data pre-processing step is intended to transform the downloaded data into the format that is used to run the 
WRF model. GFS data is delivered in the GRIB format in geographical projection. This data is transformed into 
the internal WRF format by the grib_prep.exe command, warped into the Lambert Conformal Conic projection (by 
executing hinterp.exe command) and vertically interpolated using the vinderp.exe command. These utilities 
(grib_prep.exe, hinterp.exe and vinterp.exe) are tools from the WRF Standard Initialization (SI) package. The 
results of these transformations are stored in the netCDF format. After that, the real.exe command is used to 
produce initial and boundary conditions for WRF model run. The inputs to real.exe command are GFS data in 
netCDF format and WRF configuration file (namelist.input). 

Data processing step consists in running WRF model using wrf.exe command. The outputs of the command are 
forecasts of the meteorological parameters. This is the most computationally intensive task. After WRF model 
run, post-processing step is carried out. For specified weather parameters and for each forecast frame (3 hours), 
a graphic representation (in PNG format) of spatial distribution is created. Additionally, special files containing 
georeferencing information are created (files with *.wld extension). The results of the post-processing phase are 
used to visualize the WRF forecasts via the mapping service. This service provides to the users animations of 
the weather forecasts (Figure 3). The service provides tools to select a forecast time, forecast frames (up to 72 
hours in advance), and weather parameters to display. Selected by the user information is packed into the 
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request to the server. To process the request, all required data (in PNG and WLD formats) is retrieved from the 
storage subsystem and passed to the mapping server in order to create the maps. Maps are further processed 
by the script to generate weather animation in GIF format. Finally this animation is presented at user side. 

We have also tested the performance of the WRF model in dependence of the number of computational nodes of 
the supercomputer SCIT-3. For test purposes, we used the WRF model version 2.2 with a model domain 
identical to those used in operational NWP service (200x200x31 gridpoints with horizontal spatial resolution 
10 km). We observed almost linear productivity growth within increasing number of computation nodes. For 
instance, 8 nodes of the SCIT-3 cluster gave the performance increase in 7.09 times (of 8.0 theoretically 
possible) when compared to the single node. The use of 64 nodes increases the performance 43.6 times [Kussul 
et al, 2009]. 

 

 

 

 

Figure 3. Example of land temperature forecasts using WRF model 

 

 

Land biodiversity assessment. We have developed a Web service for biodiversity assessment for the Pre-
Black Sea region of Ukraine using EOS data products [Popov et al, 2008]. Biodiversity is associated with a 
number of abiotic and biological factors that can be identified using remote sensing data. These factors include: 
landscape types, geographical latitude/altitude, climate conditions (such as mean daily temperatures, humidity, 
etc), structure and primary productivity of a vegetation mantle [Hansen and Rotella, 1999]. These factors can be 
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estimated using EO data from space [Popov et al, 2008]. The workflow for biodiversity estimation consists of the 
following steps: data acquisition, data processing, and visualization. Figure 4 shows the overall architecture of 
the service with information flows and integration modules. 

Special system was developed in order to acquire multisource satellite data on a regular basis. This system 
operationally monitors for the new products and provides automatic data acquisition from different sources: Level 
1 and Atmosphere Archive and Distribution System (LAADS), Land Processes Distributed Active Archive Center 
(LP DAAC) and National Snow and Ice Data Center (NSIDC). The acquired data are stored in the data archive of 
Space Research Institute. 

After the required data has been acquired, the data is re-projected to a conical Albert projection and scaled to the 
spatial resolution of 250 m. Since we use data from multiple sources different tools were applied for the re-
projection and scaling purposes. In particular, we used MODIS Swath Reprojection Tool, MODIS Reprojection 
Tool, and GDAL library (Geospatial Data Abstraction Layer, http://www.gdal.org). Since biodiversity index 
represents a parameter that is estimated for the time range, it is required to calculate average values for the 
parameters influencing biodiversity. For this purpose, average composites of images were created. Using these 
composites and solar irradiation acquired from SRTM DEM v2, we estimated the biodiversity index using a fuzzy 
model [Popov et al, 2008]. The resulting product is a georeferenced file in GeoTIFF format showing biodiversity 
index over the given region. The workflow of the data processing step is controlled by the Karajan engine while 
the data are processed on the computational resources of the Grid system using the GRAM service [Shelestov et 
al, 2006; Kussul et al, 2009; Hluchy et al, 2010]. 

The proposed Web service is implemented on the basis of OGC standards, Web Map Service 1.1.1 
(http://www.opengeospatial.org/standards/wms) and Web Coverage Service 1.0 
(http://www.opengeospatial.org/standards/wcs). The developed Web service is accessible via Internet through 
the address http://inform.ikd.kiev.ua/biodiv/ (Figure 5). It represents current distribution of the potential 
biodiversity and allows monitoring each of the factors that influence biodiversity. 

Vegetation state assessment. A cascade of models is used to vegetation state assessment (Figure 6). This 
includes a regional NWP model WRF that was described in the previous subsection and comprehensive land 
surface model (Noah). Remote sensing observations along with ground measurements are assimilated into these 
models to derive meteorological parameters (temperature, rainfall), land and soil parameters (moisture and 
temperature). Additionally, satellite-based products (for example, vegetation indices) are used monitor vegetation 
state. 

Such an approach was used to monitor sever droughts that hit Ukraine in spring-summer 2007. Consequences 
were catastrophic: 1,4 million ha of crops totally destroyed, 8,5 million ha of crops damaged, 100 million of U.S. 
dollars losses. The use of the proposed approach allowed us to identify regions that were mostly affected by the 
disaster, and estimate potential losses. Figure 7 shows comparison of vegetation index of 2007 and 2006. 
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Figure 4. Overall architecture of the service with information flows 

 
 

 
Figure 5. Demonstration of Web service for biodiversity assessment using EOS data products for the Pre-Black 

Sea region of Ukraine 
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Figure 6. Modelling cascade for drought monitoring in Ukraine 

 

 
Figure 7. Evolution of Enhanced Vegetation Index (EVI) in the 2006 and 2007 vegetation seasons. Drought 

affected territories are highlighted by a rectangle 
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Fire monitoring. In July-August, 2010, Ukraine suffered from fires due to extremely high temperature: +35-39 C 
in Eastern regions and +40-42 C in South regions. On average 200 fires per day were detected. There was high 
risk of forest fires and fires approaching ammunition depots. Operational monitoring of fires was carried out using 
the following datasets:  

- EO-1/ALI data acquired through Sensor Web prototype (date: 14.08.2010 08:15UTC) 

- Landat-5/TM (date: 02.08.2010 08:15UTC) 

- ZKI Fire Service that is available on daily basis and is using MODIS instrument onboard Terra & Aqua satellite.  

The data products were extracted specifically for the territory of Ukraine. MODIS products were operationally 
delivered twice per day while other products were delivered on demand for the regions with the highest risks of 
fires. Cross-validation of MODIS and Landsat-5 products was done and shoed good correspondence between 
data (Figure 8). 

 

 
 

Figure 8. Cross-validation of fire products from MODIS and Landsat-5 

 

International projects within UN-SPIDER RSO in Ukraine 

UN-SPIDER is the United Nations Platform for Space-based Information for Disaster Management and 
Emergency Response and aims at providing universal access to all types of space-based information and 
services relevant to disaster management. The UN-SPIDER Regional Support Office (RSO) in Ukraine was 
established on basis of Space Research Institute in 2010. The RSO in Ukraine provides expertise in satellite data 
processing and product generation, operational delivery of services in case of emergency situations, and training 
activities. The RSO in Ukraine is actively involved in international projects. One of such a project is the Namibian 
Pilot on integrated flood management and water related vector borne disease modelling. Within this project on of 
the main tasks is flood risk assessment based on heterogeneous data.  
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These data are (Figure 9): 

- Satellite imagery: synthetic-aperture radar (Envisat/ASAR, Radarsat-2), optical (EO-1, MODIS, Landsat-5), 
TRMM 

- Modelling data: meteorological data (numerical weather prediction), hydrological data (river catchments). 

- In-situ observations and river gauges: rainfall and river flow rate 

- Statistical data: statistical information on floods for previous years. 

The integration of different products is shown in Figure 10. 
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Figure 9. Integration of multisource data to flood risk assessment for the Namibian project 



International Journal "Information Technologies & Knowledge" Vol.5, Number 2, 2011 
 

 

139 

 

 
 

Figure 10. Namibian pilot project portal 

 

Conclusions 

In this paper we presented intelligent methods and corresponding technologies for environmental risk 
assessment. The risk assessment process is based on fusion of data acquired from different sources: models, in-
situ observations and remote sensing instruments. The concept where the same data sets are applied for 
different applications is used. Therefore, once interfaces to discover and access the required data and products 
are developed, they can be used in a uniform way for different purposes and applications. This provides a basis 
for effective and operational exploitation of data. 

The mixtures-of-experts concept for environmental risk assessment is introduced. Different experts provide a 
partial decision on the event using corresponding data, and their opinions are combined through some 
generalized rule. This allows for the problem to be broken into smaller sub-problems, and these sub-problems 
might be easier to solve than the overall problem. 

Several real-world applications are described to demonstrate efficiency of the proposed approach, namely 
numeral weather prediction (NWP), land biodiversity assessment, vegetation state assessment, fire monitoring 
and flood mapping. Most of these applications are being implemented within international projects within the UN-
SPIDER Regional Support Office (RSO) in Ukraine (http://un-spider.ikd.kiev.ua). 
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