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Abstract: At present, all methods in Evolutionary Computation are bioinspired by the fundamental principles of 
neo-Darwinism, as well as by a vertical gene transfer. Virus transduction is one of the key mechanisms of 
horizontal gene propagation in microorganisms (e.g. bacteria). In the present paper, we model and simulate a 
transduction operator, exploring the possible role and usefulness of transduction in a genetic algorithm. The 
genetic algorithm including transduction has been named PETRI (abbreviation of Promoting Evolution Through 
Reiterated Infection). Our results showed how PETRI approaches higher fitness values as transduction 
probability comes close to 100%. The conclusion is that transduction improves the performance of a genetic 
algorithm, assuming a population divided among several sub-populations or ‘bacterial colonies’. 
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Introduction 

At present, all methods in Evolutionary Computation (genetic algorithms, evolutive algorithms, genetic 
programming, etc.) are bioinspired by the fundamental principles of neo-Darwinism [Lahoz-Beltra, 2008), and by 
a vertical gene transfer; that is to say, by a mechanism in which an organism receives genetic material from the 
ancestor from which it evolved. Indeed, most thinking in Evolutionary Computation focuses upon vertical gene 
transfer as well as upon crossover and/or mutation operations.  

Microorganisms have been evolving on Earth for billions of years. At present, there are several reasons why 
microbial evolution experiments have been attracting increasing attention [Elena and Lenski, 2003). 
Microbiologists have long known how bacteria are capable of adapting and evolving in all kinds of environments. 
Bacteria are microscopic organisms whose single cells reproduce by means of a process of binary fission or of 
asexual reproduction, bearing a resemblance to John von Neumann's universal constructor [von Neumann, 
1966]. Thus, a bacterial population (or colony) evolves according to an evolutive algorithm similar to Dawkin’s 
biomorphs [Dawkins, 1986], the cumulative selection of mutations powering their evolution. Bacteria, however, 
exhibit significant phenomena of genetic transfer and crossover between cells. This kind of mechanism belongs 
to a particular kind of genetic transfer known as horizontal gene transfer. Horizontal, lateral or cross-population 
gene transfer is any process in which an organism, i.e. a donor bacterium, transfers a genetic segment to 
another one, a recipient bacterium, which is not its offspring. In the realm of biology, whereas the scope of 
vertical gene transfer is the population, in horizontal gene transfer the scope is the biosphere. This particular 
mode of parasexuality between ‘relative bacteria’ includes three genetic mechanisms: conjugation, transduction 
and transformation. In a previous paper [Perales-Gravan and Lahoz-Beltra, 2008], we introduced an evolutionary 
algorithm through the substitution of crossover operations in a genetic algorithm by means of conjugation. 
Furthermore, microorganisms are very interesting individuals because they also exhibit ‘social interactions’. 
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Recently we found [Lahoz-Beltra et al., 2009] how the inclusion of the ‘social life of microorganisms’ into the 
genetic algorithm cycle, significantly improves the algorithm’s performance.  

In Nature, microorganisms such as bacteria and viruses share a long and common evolutionary relationship. This 
relationship is mainly promoted by bacteriophages (or phages) [Davis et al., 1990], a kind of virus that multiplies 
inside bacteria by making use of the bacterial biosynthetic machinery. Some bacteriophages are capable of 
moving bacterial DNA (the ‘bacterial chromosome’) from one bacterium to another. This process is known as 
transduction. When bacteriophages infect a bacterial cell, their normal mode of reproduction makes use of the 
bacterium’s replication machinery, making numerous copies of its own viral genetic material (i.e. DNA or RNA). 
The nucleic acid copies (or chromosome segments) are then promptly packaged into newly synthesized copies 
of bacteriophage virions. Considering the life cycle of a particular bacteriophage, we can define two sorts of 
transduction (Figure 1). Generalized transduction occurs when ‘any part’ of the bacterial chromosome (rather 
than viral DNA) hitchhikes into the virus (i.e. T4 phages in Escherichia coli bacterium). However, when only 
‘specific genes’ or certain special ‘segments’ of the bacterial chromosome can be transduced, such a mistake is 
known as specialized transduction (i.e. λ phages in Escherichia coli bacterium). Here we study the possibility of 
developing genetic algorithms, including transduction operations as a horizontal gene transfer mechanism. The 
efficiency and performance of transduction was evaluated using a benchmark function and the 0/1 knapsack 
problem. The utility was illustrated by designing an AM radio receiver and optimizing the main features of the 
electronic components of the AM radio circuit, as well as those of the radio enclosure. Our results show how 
transduction improves the performance of a genetic algorithm, assuming a population divided among several 
sub-populations or ‘bacterial colonies’. Consequently, in transduction, transference of chromosome segments 
between bacterial populations or colonies is very different from migration (the occasional exchange of 
individuals). Migration and transduction could bear a resemblance, but only when transduction involves the 
complete chromosome transference between bacterial populations. Furthermore, this kind of transference is a 
highly unlikely event in bacteria, transduction of chromosome segments taking place in these microorganisms.  

In this paper, we model and simulate the two kinds of transduction operations examining the possible role and 
usefulness of this genetic mechanism in genetic algorithms. In a previous paper [Perales-Gravan and Lahoz-
Beltra, 2008], we introduced a bacterial conjugation operator showing its utility by designing an AM radio 
receiver. Conjugation is one of the key genetic mechanisms of horizontal gene transfer between bacteria. In the 
present paper, we refer to a genetic algorithm including transduction as PETRI (Promoting Evolution Through 
Reiterated Infection). We investigated the transfer of genes and chromosomes among sub-populations with a 
simulated ‘bacteriophage’. In the model we consider a structured population divided among several sub-
populations or ‘bacterial colonies’, bearing a resemblance with coarse-grain distributed genetic algorithms. Each 
sub-population is represented as a Petri dish (a glass or plastic cylindrical dish used to culture microorganisms). 
It should be noted, however, that even when we divide a population into sub-populations, the proposed algorithm 
is sequential. Thus, the algorithm is not a distributed one, since we used a mono-processor computer and the 
algorithm was not parallelized. Moreover, the migration mechanism is synchronous, as gene and chromosome 
transferences were both between sub-populations and during the same generation. Therefore, our approach 
could be related with those models of Cellular Genetic Algorithms (cGA) adopted also for mono-processor 
machines [Alba and Dorronsoro, 2008], with no relation to parallelism at all. In our model, we assumed that 
bacteria are capable of displaying crossover through conjugation, instead of performing one-point or two-point 
recombination. Moreover, we assume that no vertical gene transfer mechanism is present in bacterial 
populations. 
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Figure 1. Transduction mechanism (bacterium DNA, white rectangle; bacteriophage DNA, grey rectangle). (a) 
Infection of a donor bacterium D with a bacteriophage. (b) Bacterial and bacteriophage DNA segments mix inside 
donor bacterium D. A bacterial DNA segment is packed inside the bacteriophage ‘head’ (c), and is transferred to 
a recipient bacterium R. Finally, inside the recipient bacterium, R homologous recombination or crossover occurs 
between the emigrant bacterial DNA segment and the target bacterial chromosome. 

 

With the aim of studying the performance of the transduction operator, we used different optimization problems. 
Experiments conducted in the presence of transduction were compared with control experiments, performed in 
the absence of transduction. Similarly, we compared the transduction performance under the three types of 
crossover: conjugation, one-point or two-point recombination. We are interested in the study of genetic 
algorithms based on horizontal gene transfer mechanisms, mainly conjugation and transduction operations. It is 
important to note that even when conjugation and transduction are both horizontal gene transfer mechanisms, 
there are some relevant differences between both. In the first place, whereas conjugation involves two bacteria 
from the same population, the bacteria involved in transduction can belong to different populations. As a 
consequence, conjugation is a genetic mechanism of horizontal gene transfer within a population, whereas 
transduction is a genetic mechanism of horizontal gene transfer between populations. Secondly, in conjugation, 
the length of the transferred genetic segment is variable, whereas in transduction, the transferred segment length 
is always constant.  

Model description 

In this section, we introduce the transduction model, as well as the PETRI implementation, that is, the algorithm 
that results once transduction is included in a genetic algorithm. 

Transduction model 

Let b be a chromosome (i.e. bacterium; 1,.., j ,..., N) and p a sub-population (i.e. Petri dish; 1 ,..., i ,..., P); then a 
transduction operation (Figure 2) is defined as follows: transduction is the transfer of genetic material from a Petri 
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dish and bacterium donors (pD, bD) to a Petri dish and bacterium recipients (pR, bR). When the transference 
involves a chromosome segment, the result is a recombinant chromosome in the recipient Petri dish pR. 
However, the transference of a complete chromosome results in the substitution of one chromosome of the 
recipient Petri dish pR with the transferred one. It is important to note that ‘bacterium’ and ‘Petri dish’ terms are 
used throughout the paper as ‘chromosome’ and ‘sub-population’ synonyms, respectively. Transduction requires 
the selection of the Petri dish and bacterium donors (pD, bD), as well as the Petri dish and bacterium recipients 
(pR, bR) In the following site http://bioinformatica.net/tests/petri.html we describe how transduction was 
conducted. 

PETRI: A genetic algorithm with simulated transduction 

The current PETRI (Promoting Evolution Through Reiterated Infection) algorithm (Figure 2) uses a population 
size of N, performing re replicates, with P being the total number of Petri dishes or sub-populations. Thus, we 
performed a number of re.P trials of each simulation experiment. The algorithm cycles through epochs, searching 
for an optimum solution until a maximum of G generations is reached. Once (pD, bD) and (pR, bR) are selected, 
only one ‘bacteriophage’ is assumed to participate during each transduction event. The PETRI algorithm is 
summarized in the following pseudocode description:  

 

 

Figure 2. Transduction experiment. The figure shows transduction from donor Petri dish (pD) and bacterium (bD) 
to recipient Petri dish (pR) and bacterium (bR). In the figure, P is the total number of Petri dishes (or sub-
populations), N is the number of bacteria (or population size) per Petri dish and re the number of experimental 
replicates. 
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/* PETRI: Genetic Algorithm with Transduction */ 

1. t:=0;  
2. Initialization: Generate P Petri dishes (or sub-populations) with N random bacteria (or chromosomes). 
3. WHILE not stop condition DO 

                       /* Genetic Algorithm */ 
   (3.1)  FOR each P Petri dish DO 

   Evaluation of chromosomes 
    Selection 
    Conjugation or Crossover  (one-point, two-point)  
    Mutation 
                      (3.2)  END FOR 
       /* End of Genetic Algorithm */ 
 4. Transduction: (pD, bD)  (pR, bR) 
 5. t:=t+1; 
 6. END WHILE; 
/* End of PETRI */ 

 

Starting out with a random population of chromosomes (or bacteria), we simulated selection, crossover, 
mutation, and transduction, obtaining new generations of equal population size. Once the initial population of 
chromosomes was randomly obtained, the order in which the genetic operators were applied was in consonance 
with the SDS protocol [Lahoz-Beltra, 2001] [Perales-Gravan and Lahoz-Beltra, 2004]. This protocol is inspired by 
DNA shuffling, an experimental method used in biotechnology for improving in vitro protein activity and 
functionality. In the present simulation experiments, the SDS protocol involves a cycle of crossover and mutation, 
as well as transduction, through ng generations. This phase is followed by repeated cycles of crossover and 
transduction, one per generation, in absence of mutation. Considering the performance of previous experiments, 
the simulation experiments were conducted setting ng equal to 25. Selection was simulated as follows. In each 
generation, we evaluated the fitness of each chromosome using a fitness function that depends on the 
optimization problem chosen. Once the chromosomes were evaluated, we selected the crossover (or mating) 
pool of the next generation using the roulette wheel parent selection algorithm [Goldberg, 1989] [Lahoz-Beltra, 
2004]. Clearly, other selection schemes are possible, such as tournament selection, truncation selection, as well 
as linear and exponential ranking selection. However, the roulette wheel parent selection scheme bears a better 
resemblance to Darwinian natural selection [Lahoz-Beltra, 2001]. Once a new generation of offspring 
chromosomes is obtained, then pairs of chromosomes are randomly selected within a sub-population or Petri 
dish. Once a pair of chromosomes (or bacteria) {#i, #j} is selected, whether or not to perform crossover on the 
current pair of chromosomes {#i, #j} is decided on the basis of a Bernoulli trial regarding conjugation as having a 
given probability pc (or alternatively, instead of conjugation, crossover is conducted via one-point or two-point 
recombination). We simulated mutation of a gene by randomly changing the value gene, choosing the mutated 
value from a uniform distribution with a similar range to those defined to obtain the initial population of 
chromosomes. Once again, whether or not to change a gene value on a chromosome is decided on the basis of 
a Bernoulli trial, mutation being a success with a given probability pm (mutation probability). Transduction was 
simulated based on the model described above. The operator requires the selection of the Petri dish and 
bacterium donors (pD, bD), as well as the Petri dish and bacterium recipients (pR, bR). Once (pD, bD) and (pR, bR) 
are both selected, whether or not to perform transduction on the current pair is decided on the basis of a 
Bernoulli trial regarding transduction as having a given probability pt (transduction probability). 
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Simulation experiments 

We studied the performance of the simulated transduction by considering three optimization problems. The first 
problem uses a benchmark function, the second one is the 0/1 knapsack problem, and finally we illustrated the 
usefulness of transduction in the problem described in [Perales-Gravan and Lahoz-Beltra, 2008]: 

 

Experiment 1. - An initial optimization problem was an instance of the Michalewicz function. We used 10 
variables or genes, so that: 
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The simulation experiments were conducted with N = 500 chromosomes (or bacteria), re = 15 and P = 4 Petri 
dishes. Thus, we performed 60 trials (15 replicates x 4 Petri dishes) in each experiment. The transduction 
experiments were conducted transferring only complete chromosomes, cycling the algorithm through epochs 
searching for an optimum, until a maximum of 700 generations (G) is reached. In each trial, we calculated the 
population average fitness in the last generation. The crossover and mutation probabilities were set to pc=0.75 
and pm=0.05, respectively. When crossover was simulated through conjugation, then the conjugation parameter 
was set as 0.5  . 

Since preliminary results (experiment 3) indicated the best transduction policy, we simulated transduction by 
selecting donors (pD, bD) based on max-max criterion, and recipients (pR, bR) using roul-r criterion. The simulation 
experiments were conducted by setting the transduction probabilities pt to 0% (control experiment, without 
transduction), 25%, 50%, 75% and 100%. We performed simulation experiments with PETRI, using conjugation, 
and one-and two-point recombination.   

 

Experiment 2. - A second optimization problem was the well-known 0/1 knapsack problem. Let us assume we 
have j kinds of items and each item has a value vj and weight wj, the maximum weight that we can carry in the 
knapsack being equal to W. The 0/1 knapsack problem restricts the number of each kind of item xj to 0 or 1. The 
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using the benchmark knapsack instance ‘knap100’ published on a web site by the [Swiss Federal Institute of 
Technology Zurich, 2008]. The instance includes the values and weights of 100 items, maximum weight being 
W=2732. The simulation experiments were performed with N = 200 chromosomes (or bacteria), re = 15 and P = 4 
Petri dishes, conducting 60 trials (15 replicates x 4 Petri dishes) in each experiment. The transduction 
experiments transferred only complete chromosomes, cycling the algorithm through epochs until a maximum of 
1000 generations (G) was reached. In each trial, we obtained maximum fitness in the last generation. The 
crossover and mutation probabilities were set to pc=0.75 and pm=0.05, respectively. When crossover was 
simulated through conjugation, the conjugation parameter was set as 0.5  . Once again, transduction was 
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simulated by selecting donors (pD, bD) based on the max-max criterion and recipients (pR, bR) with the roul-r 
criterion. The transduction probability pt was set to 0% (control experiment, without transduction), 25%, 50%, 
75% and 100%. We performed simulation experiments with PETRI, using conjugation and one- and two-point 
recombination.   

 

Experiment 3. - An example of the usefulness of transduction in a real-life problem consists of finding the main 
features of the electronic components of an AM radio receiver, along with those of the radio enclosure. The 
current PETRI algorithm uses a population size of 500 (N) and 9 (P) Petri dishes, performing fifty replicates (re). 
Therefore, we performed 450 trials (50 replicates x 9 Petri dishes) in each experiment. The algorithm cycles 
through epochs, searching for an optimum AM radio receiver until a maximum of 200 generations (G) is reached. 
In each trial, we calculated the population average fitness in the last generation. The crossover and mutation 
probabilities were set to pc=0.75 and pm=0.05, respectively. As crossover was simulated via conjugation, the 
parameter   was set to 0.5. The initial population of chromosomes was obtained at random, choosing the gene 

values from a uniform distribution according to the ranges described in [Perales-Gravan and Lahoz-Beltra, 2008]. 
In each generation, we evaluated the fitness of each chromosome, that is, the degree of achievement of the AM 
radio receiver circuit, along with the main features of the radio enclosure. Considering the intricacy of the fitness 
evaluation, for a detailed explanation, see [Perales-Gravan and Lahoz-Beltra, 2008].  

The simulation experiments performance was evaluated according the statistical methods described in [Lahoz-
Beltra and Perales-Gravan, 2010] as well as using the MAF values defined in the site 
http://bioinformatica.net/tests/petri.html.  

Note that figures cited below (in section Results) are included in the aforementioned web site. 

Results 

A remarkable result showing the role of transduction was obtained with the Michalewicz function. Figure 3 shows 
how PETRI approaches the maximum function value (9.66 in our experiments) as transduction probability pt 
comes close to 100%.  A Kruskal-Wallis test shows that, with a p-value equal to zero, the differences among 
medians were statistically significant at the 95.0% confidence level. Thus, the genetic algorithm performance is 
significantly improved, regardless of the crossover operator (conjugation, one- or two-point recombination). In 
particular, in the absence of transduction, the medians of conjugation, one-point recombination and two-points 
recombination were 8.87, 8.96 and 8.97, respectively. However, when optimization experiments included a 
transduction operator (transferring a complete chromosome), the medians of conjugation, one-point 
recombination and two-points recombination were 9.29, 9.33 and 9.36, respectively. The Bartlett, Cochran, and 
Levene tests were accomplished, testing the homogeneity of variances. The obtained p-values were zero, 
showing that differences among variances are statistically significant at the 95.0% confidence level. The 
conclusion is that variance (or population variability) depends upon transduction. Indeed, the population 
variability reaches a minimum value when a complete chromosome is transferred and the transduction probability 
pt equal to 100%. However, it is important to note that in Nature, only tiny fragments or chromosomal segments 
of bacterial DNA are transduced, as opposed to complete chromosomes. In agreement with [Davis and Weller, 
1998], the genetic material carried by bacteriophages is, conveniently, around 2% the length of the bacterial 
chromosome. An interesting observation is that even when transduction is a major driving force behind diversity 
in natural populations, in our simulation experiments, transduction reduces the variability of the population. The 
explanation might be that, in natural populations, transduction occurs at random and at very low frequencies, 
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from 10-2 to 10-10 [Ogunseitan, 2008], whereas in the experiments performed, the chromosome or its segments 
were selected with a medium or high  probability and based on max-max criterion.  

Figure 4 shows a Multiple-Box-and-Whisker Plot of the maximum fitness values obtained in the 0/1 knapsack 
problem. It is interesting to note how PETRI approaches highest fitness values as transduction probability pt 
comes close to 100%. A Kruskal-Wallis test shows that, with a p-value equal to zero, the differences among 
medians were statistically significant at the 95.0% confidence level. Consequently, algorithm performance is 
significantly improved regardless of the crossover operator employed (conjugation, one-point recombination or 
two-point recombination). In the absence of transduction, the median value of the obtained knapsacks under 
conjugation, one-point recombination and two-point recombination were 2601.5, 2639.5 and 2612.0 respectively. 
However, in presence of transduction, with a pt equal to 100% (transferring a complete chromosome), the 
median values of the optimized knapsacks were 3214.0, 3253.0 and 3126.0, respectively. The Bartlett, Cochran, 
and Levene tests were accomplished to examine the homogeneity of variances. The obtained p-values were 
zero, showing that differences in variances between the set of experiments without transduction (labeled as 1, 6 
and 11 in Figure 4) and the experiments including transduction are statistically significant at the 95.0% 
confidence level. Once again, we conclude that variance depends on transduction, population variability 
decreasing when a complete chromosome is transferred. 

Based upon the above results, we reached the following general conclusion. Transduction helps the population 
to reach a better optimum solution, and has an effect on population variability. However, the optimum achieved 
with the transduction of chromosome segments is always below in relation to the optimum reached when 
transduction transfers a complete chromosome. On the other hand, when transduction involves chromosome 
segments, population variability (or variance) is greater than the variability that results from a complete 
chromosome transduction. That is, in consonance with Figure 6, transduction of complete chromosomes, a 
mechanism that bears a resemblance to migration (e.g. animals and plants), will push a population to the highest 
optimum but to the lowest variability. In contrast, transduction of chromosome segments, a mechanism that is 
closer to real transduction in microorganisms, for instance, will move the population toward a higher variability, 
but a lower optimum value (Figure 6). Both situations could represent different strategies of organisms during 
evolution, preventing premature convergence [Grefenstette, 1981]. Transduction of chromosome segments 
results in a subsequent homologous recombination or crossover, promoting the sudden jump of the recipient 
population towards better solutions in the evolutive or fitness landscape. This might be explained by the fact that 
the arrival and recombination of new genetic information (including good Holland’s schemata) breaks the 
population equilibrium (Gould’s punctuated equilibrium; see [Gould and Eldredge, 1977]) in the recipient Petri 
dish, triggering its evolutionary change [Cohoon et al., 1987]. Our findings support similar observations made in 
Nature. For instance, by evaluating the coevolution of the bacterium E. coli and the bacteriophage T7, [Forde et 
al., 2004] found that the local adaptation was lower in closed communities than in open ones, suggesting that 
gene flow was acting as source of beneficial mutations in the open communities.  

Figure 5 shows the Multiple Box-and-Whisker Plot of the MAFT values obtained for each one of the thirty-three 
types of transduction simulation experiments performed with the AM radio receiver (experiment 3). The Kruskal-
Wallis test shows that, with a p-value below 2.200x10-16, there are statistically significant differences among the 
medians at the 95.0% confidence level. Comparing the control experiment (the simulation experiment without 
transduction, labeled as 1 in Figure 5) with the two best transduction experiments (a chromosome segment is 
transferred, labeled as 19 in Figure 5, and the transference of a complete chromosome, labeled as 33 in Figure 
5), we concluded as follows. Regardless of the kind of transduction, the best results were obtained (Figure 6) 
when selection of the donor Petri dish and the bacterium (pD, bD) are both based on the max-max criterion, the 
recipients (pR, bR) being selected with the roul-r criterion. Note that the best transduction protocol is the one in 
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which the simulated ‘bacteriophage’ selects both the donor Petri dish and the bacterium with maximum fitness, 

so that  max
1,.., 1 2, ,...,P if f f  and  max

1,.., 1 2, ,...,N jf f f , whereas selection of the recipient Petri dish and the bacterium are 

both based on stochastic methods, such as the roulette wheel approach or the uniform distribution procedure. In 
the Kruskal-Wallis test between the control experiment and the transduction experiments with chromosome 
segments (Figure 6), the p-value obtained was equal to 1.603x10-08. Since the p-value is below 0.05, there is a 
statistically significant difference between the medians at the 95.0% confidence level. This is similar to the 
Kruskal-Wallis test between the control experiment and the transduction experiments with complete 
chromosomes (Figure 6). In this case, the p-value obtained was below 2.200x10-16, the differences between the 
medians at the 95.0% confidence level being statistically significant.  

Figure 7a shows a representative performance graph (a Box-and-Whisker Plot per generation) of the control 
experiments (without transduction and re=50), as well as the graph obtained for the best transduction 
experiments in which only chromosome segments are transferred (Figure 7b) and the transduction experiment 
transfers a complete chromosome (Figure 7c). Furthermore, Figure 8 shows in the aforementioned experiments 
the mean of the average fitness per generation (MAF). In the control experiments (Figure 8a), the MAFT is 

equivalent to the MAF D R value per generation.  Note how in transduction experiments the highest slope (Figure 
8b-8c) corresponds to the donor Petri dishes (MAFD). In such figures, note the overlapping between the 
performance curves, that is the curve of the recipient Petri dishes (MAFR) and the curve of the MAF value per 
generation calculated for all the Petri dishes (MAFT). The oscillating behavior of MAFR is explained by the fact 
that the Petri dish and the bacterium recipients are both selected by means of stochastic procedures. Obviously, 
the worst performance is observed in those Petri dishes or colonies that do not participate in the transduction 

experiments (MAF D R ). 

Discussion 

Thirty years ago, [Anderson, 1970] suggested that ‘virus transduction’ could be considered as one of the key 
mechanisms of horizontal gene propagation. This fact suggests the importance of horizontal gene transfer as an 
evolutionary mechanism, as it involves the transport of DNA segments from individuals belonging to one phylum 
to individuals of another phylum. Furthermore, the evolutionary dynamics of populations might depend on the 
transfer of DNA from one population to other. In fact, [Syvanen, 1985] suggests that cross-species gene transfer 
could help to explain many experimental observations. For instance, the rapid bursts in evolution (Gould’s 
punctuated equilibrium hypothesis, see [Gould and Eldredge, 1977]), or the widespread occurrence of parallelism 
(or convergent evolution of similar traits in the fossil record). According to [Margulis, 1981], the acquisition and 
accumulation of random mutations is not sufficient to explain how inherited variations occur. Moreover, whereas 
Darwinism emphasizes the role of selection as the force behind evolution (indeed, selection is the main evolutive 
mechanism underlying genetic algorithms), [Margulis, 1981] and other evolutionary biologists emphasize the role 
of horizontal gene transfer and cooperation. 

The simulation results are consistent with the general picture of transduction in bacteria. Transduction and 
conjugation operators sufficiently capture the role of such microbial genetic mechanisms in horizontal gene 
transfer. PETRI efficiency is shown by optimizing a benchmark function, solving the 0/1 knapsack problem and 
evolving an optimum design of an AM radio receiver. Even when PETRI is not a distributed genetic algorithm, 
most DGA and cGA applications use a simple process of chromosome migration as the only mechanism of 
horizontal gene transfer. However, we show how, based upon microbial genetics, it is possible to develop new 
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algorithms, genetic operators and simulation protocols, which might be of use in Evolutionary Computation. For 
instance, in PETRI algorithm we combine two different genetic mechanisms exhibited by real bacteria. Of a side 
conjugation, that is, a local mechanism of horizontal information transfers within a population; of other 
transduction, that is, a global mechanism of horizontal information transfers between populations.  

In a previous paper, [Kubota et al., 1996] introduced VEGA, addressing the possibility of simulating transduction, 
a virus-evolutionary genetic algorithm. Their authors introduced a virus infection operator and a virus fitness 
value, modeling two populations, the host population and the virus population. The main difference between this 
model and our model is the fact that, in VEGA, there are two populations: a host population, representing the 
candidate solutions, and a virus population (initially generated from host population), representing a substring set 
of solutions. Consequently, in VEGA, the underlying model is the coevolution of two populations, a main host 
population and a secondary viral population. In contrast, in PETRI several hosts or bacterial populations (or Petri 
dishes) share solutions via transduction. Furthermore, VEGA viruses propagate their own substrings or 
chromosome segments among host individuals, whereas in PETRI viruses propagate only the host (or bacterial) 
chromosome or segments between the host individuals. Another interesting difference is that VEGA viruses 
represent a real population, each virus presenting a fitness value. However, our model viruses are ‘dummy’ 
agents, responsible for the transduction mechanism. Finally, in VEGA, the host population does not comprise 
bacteria, as crossover is simulated in the usual manner in genetic algorithms that is one-point or two-point 
recombination (vertical gene transfer). In contrast, PETRI simulates crossover based on a conjugation operator 
(horizontal gene transfer) or alternatively, as VEGA, thus using one-point or two-point recombination (vertical 
gene transfer). 

Conclusion 

We modeled and simulated a transduction operator, exploring the usefulness of transduction in a genetic 
algorithm. The genetic algorithm including transduction has been named PETRI, showing how PETRI 
approaches higher fitness values as transduction probability comes close to 100%. The conclusion is that 
transduction improves the performance of a genetic algorithm, assuming a population divided among several 
sub-populations or ‘bacterial colonies’. 
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