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Solving Combinatorial Problems with Networks of Genetic Processors1

Marcelino Campos, José M. Sempere

Abstract: Recently, a new model of computation that is inspired by genetic operations over strings such as mutation
and crossover has been proposed. Networks of Genetic Processors (NGPs) are highly related to previously
proposed models such as Networks of Evolutionary Processors (NEPs) and Networks of Splicing Processors
(NSPs). NGPs are computationally complete and several complexity measures have been proposed to evaluate
their computing power with restricted resources (mainly, the time and the number of processors in the network). In
this work we evaluate NGPs in an experimental approach. We have selected a NP-complete decision problem, the
Hamiltonian Cycle Problem, and we have solved different instances with the proposed model of computation. Our
aim is to prove that the selected problem (and all NP problems) can be solved in polynomial time with NGPs. In this
case, our experiments show that the problem can be solved in linear time with a fixed number of processors for a
given size of the problem.
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Introduction

Natural Computing [KR, 2008] is a research area that looks to biology and biochemistry nature in order to propose
new models of computation and algorithms. The experiment performed by Adleman [Adleman, 1994] in which he
solved a combinatorial problem using only DNA strands and enzymes was a milestone that triggered the proposals
of new models of computation based on the biomacromolecules and living cells behavior. So, the Networks of
Bio-inspired Processors (NBPs) have processors that operate over multisets of strings by applying string operations
inspired by biology. The communication and the filtering of the new strings among the processors are the two
remaining ingredients that make this moldel a complete model of computation (that is, in many cases they are
equivalent to Turing machines). There have been different proposals of NBPs: the Networks of Evolutionary
Processors (NEPs) [CMMS, 2003] operate with point mutation over strings by applying substitution, deletion and
insertion of new symbols. The Networks of Splicing Processors (NSPs) [MMM, 1949] work with splicing rules
inspired by DNA recombination with context. In our model, the Networks of Genetic Processors (NGPs) [CS, 2012],
the processors can apply mutation by substitution and splicing with empty context (full crossover). It has been
proved that NGPs are computationally complete and they can solve any NP problem with a polynomial number of
computing steps which can be applyied in polynomial time over the size of the input instance. In this work, we use
NGPs to solve the Hamiltonian Cycle Problem (HCP) that is a well known NP-complete decision problem. So, any
combinatorial decision problem that belongs to NP can be solved by reducing it to the HCP and then applying our
proposal to obtain a solution.
The structure of this work is as follows: first, we introduce basic concepts on formal language theory and computation
that are used in some definitions. Then, we define the Networks of Genetic Processors and we introduce a
complexity measure to evaluate the time complexity of the model. In the next section, we define The Hamiltonian
Cycle Problem and we propose a NGP to solve it. We show the results of the experiments that we have carried out
and, finally, we provide some conclusions and some guidelines for future work.

Basic concepts and notation
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In the following we will introduce some basic concepts about language theory from [HU, 1979] and computational
complexity from [DK, 2000].
An alphabet is a finite set of elements named symbols. A string is any ordered finite sequence of symbols. The
empty string is denoted by ε and it is defined as the string with no symbols. The infinite set of all the strings defined
over a given alphabet V will be denoted by V ∗. Given the string x ∈ V ∗, we denote the minimal subset W ⊆ V
such that x ∈ W ∗ by alph(x). Given the string x ∈ V ∗, we denote the set of segments of x by seg(x), and it is
defined as the set {β ∈ V ∗ : x = αβγ with α, γ ∈ V ∗}. Obviously, given any string x ∈ V ∗ the set alph(x)
is a subset of seg(x). A language defined over an alphabet V is a subset of strings of V ∗.
Given the alphabet V , a mutation rule a → b, with a, b ∈ V , can be applied over the string xay to produce the
new string xby (observe that a mutation rule can be viewed as a substitution rule).
A crossover operation is an operation over strings defined as follows: Let x and y be two strings, then x ◃▹ y =
{x1y2, y1x2 : x = x1x2 and y = y1y2}. Observe that x, y ∈ x ◃▹ y given that we can take ϵ to be a part of
x or y. The operation can be extended over languages as L1 ◃▹ L2 =

∪
x∈L1,y∈L2

x ◃▹ y. Obviously, for any
language L, L ◃▹ L is well defined.
Let P and F be two disjoint subsets of an alphabet V , and let w ∈ V ∗. We define the predicates φ(1) and φ(2)

as follows

1. φ(1)(w,P, F ) ≡ (P ⊆ alph(w)) ∧ (F ∩ alph(w) = ∅) (strong predicate)

2. φ(2)(w,P, F ) ≡ (alph(w) ∩ P ̸= ∅) ∧ (F ∩ alph(w) = ∅) (weak predicate)

We can extend the previous predicates to act over segments instead of symbols. Let P and F be two disjoint sets
of finite strings over V , and let w ∈ V ∗. We extend the predicates φ(1) and φ(2) as follows

1. φ(1)(w,P, F ) ≡ (P ⊆ seg(w)) ∧ (F ∩ seg(w) = ∅) (strong predicate)

2. φ(2)(w,P, F ) ≡ (seg(w) ∩ P ̸= ∅) ∧ (F ∩ seg(w) = ∅) (weak predicate)

In the following, we work with this extension over segments instead of symbols. We can use single symbols
depending on the definition ofP andF . The construction of these predicates is based on random-context conditions
defined by the sets P (permitting contexts) and F (forbidding contexts). Let V be an alphabet and L ⊆ V ∗, and
let β ∈ {(1), (2)}, we define φβ(L,P, F ) = {w ∈ L|φβ(w;P, F )}.
In the following, we introduce some basic concepts of computational complexity theory. A decision problem is a
(mathematically defined) problem where the answer is the affirmation or negation of a predicate over the parameters
of the problem. A deterministic algorithm is an algorithm that given a particular input, it always produce the
same output. A nondeterministic algorithm is an algorithm that can exhibit different behaviors on different runs.
A nondeterministic algorithm for a decision problem has two different phases: the guessing phase and the checking
phase. In the guessing phase a possible solution is created randomly without complexity cost. In the checking
phase the algorithm checks if this possible solution is a good real solution. The time complexity in nondeterministic
algorithms is measured only by the checking phase. The complexity class P contains all the decision problems that
can be solved by deterministic algorithms in polynomial time. The complexity class NP contains all the decision
problems that can be solved by nondeterministic algorithms in polynomial time. It is a classical and open problem
to know whether P = NP or not.

Accepting Networks of Genetic Processors

Now, we provide the basic concepts and definitions for the Networks of Genetic Processors as they were introduced
in [CS, 2012]. In the same work, a formal proof of the computational completeness and the relationships between
NGPs and Parallel Genetica Algorithms are showed.
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Let V be an alphabet. A genetic processor N over V is defined by the tuple (MR, A, PI, FI, PO, FO, α, β),
where:

• MR is a finite set of mutation rules over V

• A is a multiset of strings over V with a finite support and an arbitrary large number of copies of every string.

• PI, FI ⊆ V are finite sets with the input permitting/forbidding contexts

• PO,FO ⊆ V are finite sets with the output permitting/forbidding contexts

• α ∈ {1, 2} defines the function mode with the following values

– If α = 1 the processor applies mutation rules

– If α = 2 the processor applies crossover rules and MR = ∅

• β ∈ {(1), (2)} defines the type of the input/output filters of the processor. More precisely, for any word
w ∈ V ∗ we define an input filter ρ(w) = φβ(w,PI, FI) and an output filer τ(w) = φβ(w,PO,FO).
That is, ρ(w) (resp. τ(w)) indicates whether or not the word w pass the input (resp. the output) filter of the
processor. We can extend the filters to act over languages. Thus, ρ(L) (resp. τ(L)) is the set of words of
L that can pass the input (resp. output) filter of the processor.

A Network of Genetic Processors (NGP) of size n is defined by the tuple Π = (V,N1, N2, ..., Nn, G,N ),
where V is an alphabet, G = (XG, EG) is a graph, Ni (1 ≤ i ≤ n) is a genetic processor over V , and
N : XG → {N1, N2, ..., Nn} is a mapping that associates the genetic processor Ni to each node i ∈ XG.
We distinguish two types of Networks of Genetic Processors: The accepting one and the generating one. In the
accepting case, the network will be denoted by ANGP and it has two distinguished processors, the input and the
output processors, Ninput andNoutput respectively. A configuration of an ANGPΠ = (V,N1, N2, ..., Nn, G,N )
is defined by the tuple C = (L1, L2, ...Ln), where Li is a multiset of strings defined over V for all 1 ≤ i ≤ n. A
configuration represents the multisets of strings which are present in any processor at a given moment (remember
that every string appears in an arbitrarily large number of copies). The initial configuration of the network is
C0 = (A1, A2, ...An). Observe that since the input string w is allocated in the input node, Ainput = {w},
while the output node is empty, so Aoutput = ∅.
Every copy of any string in Li can be changed by applying a genetic step in accordance with the mutation or
crossover rules associated with the processor Ni. Formally, we say that the configuration C1 = (L1, L2, ...Ln)
directly changes into the configuration C2 = (L′

1, L
′
2, ...L

′
n) by a genetic step, written as C1 ⇒ C2, if L′

i is
the multiset of strings obtained by applying the mutation or crossover rules of Ni to the strings in Li. An arbitrarily
large number of copies of each string is available in every node. Therefore, after a genetic step, one gets an
arbitrarily large number of copies of any string, which can be obtained by using all possible mutation or crossover
rules associated with that node. By definition, if Li is empty for some 1 ≤ i ≤ n, then L′

i is empty as well.
In a communication step, each processor Ni sends all copies of the strings to all the processor connected to Ni

according to G, provided that the strings are able to pass its output filter of Ni. In addition, it receives all copies
of the strings sent by any processor connected to Ni according to G, provided that they can pass its input filter.
Formally, we say that the configuration C ′ is obtained in one communication step from configuration C , written as
C ⊢ C ′, iff

C ′(x) = (C(x)− τx(C(x))) ∪
∪

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG (1)

LetΠ = (V,N1, N2, ..., Nn, G,N ) be an ANGP. A computation sequence inΠwill be a sequence of configurations
C0, C1, · · · , where C0 is the initial configuration of Π, C2i ⇒ C2i+1 and C2i+1 ⊢ C2i+2 for all i ≥ 0. This
sequence must be maximal (no other sequence follows from the previous one).
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We will consider that a sequence of configurations is finite whenever at least one of the following two conditions
holds:

1. The output node contains at least one string. That is, if Nk is the designated output node then Lk ̸= ∅. In
this case we say that the network accepts the input string.

2. In a genetic step the operations cannot be applied (the strings at every processor do not change) and no string
is received or transmitted in the next communication step. After two consecutive genetic or communication
steps, the configuration of the network does not change.

The language accepted by an Accepting Network of Genetic Processors is the set of input strings such as the
network halts with at least one string in the output processor. Observe that, from the definitions given above, any
ANGP is a deterministic device and we can predict the network behavior from a given input configuration.
We can establish the following time complexity measure for the ANGP model: Let us consider an ANGP R and the
language L accepted by R. The time complexity of the accepting computation of R, if x is given as an input string,
is denoted by TimeR(x) and it is defined as the number of steps (both communication and evolutionary ones)
such that the network R halts on x in an acceptance mode. Observe that this measure is not defined whenever
the machine does not halt or it repeats two nonacceptance consecutive configurations. This measure, as defined
above, fully satisfies Blum’s axioms for abstract complexity measures [Blum, 1967]. In addition, we can define the
partial function TimeR : N → N as follows:

TimeR(n) = max{TimeR(x) : x ∈ L(R), |x| = n} (2)

If we take an integer function f : N → N then we can define the following language class provided that there exists
an ANGP R that holds the property required in the definition

TimeANGP (f(n)) = {L : There exits an ANGP , R and a natural number n0

such that L = L(R) and ∀n ≥ n0 TimeR(n) ≤ f(n)}
(3)

Finally, for a set of integer functions C we define

TimeANGP (C) =
∪
f∈C

TimeANGP (f(n)) (4)

We will consider the function set poly as the set of integer polynomial functions, and we denote TimeANGP (poly)
by PTimeANGP . It has been proven in [CS, 2012] that NP ⊂ PTimeANGP . So, all NP problems can be
solved by ANGPs in polynomial time. In the following section, we select a NP-complete problem in order to test the
practical implications of the previous result.

The Hamiltonian Cycle Problem

In order to test NGPs as decision problem solvers, we have selected a well known combinatorial problem: the
Hamiltonian Cycle Problem (HCP). This problem belongs to Karp’s list of NP-complete problems that were published
in his landmark paper on NP-completeness [Karp, 1972]. In addition, the same problem was selected by Adleman
to give a proof of concept for DNA computing solving [Adleman, 1994]. The HCP can be defined as follows: In
graph theory, a path is a sequence of vertices such that from each of hem there is an edge to the next vertex in
the sequence. A Hamiltonian cycle is a path that includes every vertex of the graph exactly once, and there exists
an edge from the last vertex in the sequence to the first one. The (undirected) Hamiltonian Cycle Problem is the
problem of determining whether, given an (undirected) graph, a Hamiltonian cycle exits.
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Proposal of an ANGP to solve the HCP
Before we start to define an ANGP to solve the HCP, we must propose an encoding of the input graph instance.
Given that the size of the graph (the number of vertices it has) is unbounded, and the input alphabet of the ANGP is
finite, we will encode each vertex as a string of symbols. In order to make our experiments in an easy way, we will
consider only those graphs that have at most 50 vertices. Observe that for those graphs with a number of vertices
bigger than 50, we can provide the same solution that we are carrying out. The encoding of vertices to strings have
a linear time complexity, so the results will not be affected by this aspect.
Given a graph G = (D,E) where D is a set of n vertices, with n ≤ 50, and E is a set of edges, we propose the
following ANGP R:
R = (V,N0, N1, N2, ..., N49, Nc, Npc, Nout,K53, f), where V = {0, 1, 2, ...49} ∪ {0′, 1′, 2′, ...49′} ∪
{#,#′, 0∗}, where K53 is a star graph with 53 nodes. The graph have two connected central nodes Nc and Npc

that are connected with the rest of nodes Ni : 0 ≤ i ≤ 49. The output node Nout is only connected to Npc.
The processors are defined as follows:

For every vertex q ∈ D
Nq = ({# → q′}, ∅, {p# : (p, q) ∈ E} ∪ {0∗# : (0, q) ∈ E}, {q}, {q′}, ∅, 1, (2))

Nc = (∅, {#′}, {n′ : 0 ≤ n ≤ 49}, {#,#′}, {n′ : 0 ≤ n ≤ 49} ∪ {n : 0 ≤ n ≤ 49} ∪
{#′#′, 0∗}, ∅, 2, (2))

Npc = ({q′ → q : 0 ≤ q ≤ 49} ∪ {#′ → #}, {0∗#}, {n′#′ : 0 ≤ n ≤ 49}, ∅, {n : 0 ≤ n ≤
49} ∪ {0∗#}, {n′ : 0 ≤ n ≤ 49} ∪ {#′}, 1, (2))

Nout = (∅, ∅, {n : 0 ≤ n ≤ 49}, ∅, ∅, ∅, 1, (1))

The computation of the network starts in the Npc processor, with the sequence 0∗# given that we consider that
the cycle starts at vertex 0. The # symbol marks the end of the string and it is used to add new vertices to the
cycle. The sequence leaves Npc and goes to processors Ni : 0 ≤ i ≤ 49 where (0, i) ∈ E. Every processor
Ni : 0 ≤ i ≤ 49 has a rule that changes the # symbol for the symbol i (the name of the vertex). Then, the
sequence goes to the processor Nc that is used to add the symbol #′ at the end. This sequence goes to Npc

that cleans all the marks from all the symbols. The most interesting aspect of the sequence from Npc is that the
symbols before the # represents the last vertex from the path, that is the vertex j. In the next computation step,
the sequences go only to the processors Ni : 0 ≤ i ≤ 49 where (j, i) ∈ E (this process is carried out by the
filters of each processor). The network repeats this process until the computation ends. If during the computation,
a string gets a path with all the nodes, this string goes to the Nout processor, the computation ends and the answer
to the problem is YES. On the other hand, if the graph does not have a Hamiltonian cycle there is a computation
step where the strings cannot be communicated to any processor Ni : 0 ≤ i ≤ 49. Then, no string is received
or transmitted and the configuration of the network does not change. So, the network halts and the answer to the
problem is NO.

Experimental Results

We have considered only instances of graphs with Hamiltonian cycles. This is the case to measure the complexity
in the worst case, given that the number of steps in the computation, for each graph, is the highest when it has a
cycle. The reason for this is that the computation of the NGP consists in creating a Hamiltonian path. If the input
graph does not have a Hamiltonian cycle the process ends before, and the number of steps is lower (this result has
been observed empirically).
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The graphs used in the experiments have a different number of vertices and edges. The table in the Figure 1 shows
the results obtained by the experiments.

vertices edges Computation steps
5 8 40
5 10 40
5 12 40

10 18 80
10 20 80
10 22 80
15 28 120
15 30 120
15 32 120
20 38 160
20 40 160
20 42 160

Figure 1: Computation steps to solve The Hamiltonian Cycle Problem using Networks of Genetic Processors.

We can observe that the number of edges does not affect to the number of computation steps. The NGP can check
all the edges at the same time because the edges are represented by the filters of every processor Ni : 0 ≤ i ≤ 49
and they work in pararell.
If n is the number of vertices, the number of computational steps used by the NGP to check if the graph have a
Hamiltonian cycle is a most 8 ∗ n (O(n)). In order to add one vertex to the path, the network makes 8 computation
steps: one, in Ni, to change the # simbol to i′, one to send the sequence from Ni to Nc, one to add #′ at the end,
one to go to Npc, three to clean the sequence (two genetic steps plus one communication step), and one to return
the sequence to Nj processor. If the graph has a hamiltonian cycle, the network repeats this process n times. So,
the network performs at most n∗8 computation steps. This results gives a sign that HCP belongs to PtimeANGP

as it has been theoretically proved [CS, 2012].

Conclusions and Future Work

In a previous work [CS, 2012], we proposed a new model of computation, the Networks of Genetic Processors. In
the same work we proved that the model is computational complete and we defined a time complexity measure for
it.
In this work, we have carried out some experiments to observe the behavior of the NGPs to achieve the time
complexity that has been theoretically proved. We have selected a NP -complete problem, the Hamiltonian Cycle
Problem, and we have implemented an ANGP to solve it. The results of the experiments give a sign that the NGPs
can solve NP problems in polynomial time (nevertheless, the NGPs work in an ideal parallel model and some
practical aspects must be taken into account). For the Hamiltonian Cycle Problem, we can implement an ANGP
where the computation steps depend only on the number of vertices (not on the number of the edges), and with a
linear time complexity.
For our future research, we will consider other types of problems such as the optimization problems (i.e. the
optimization Travelling Salesman Problem or the Knapsack Problem). For this case, we need to define a new kind
of NGPs that work like a set of Parallel Genetic Algorithms. In addition, the implementation of NGPs in hardware to
exploit the parallelism of the model will be considered too.
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