International Journal “Information Technologies & Knowledge" Vol.7, Number 1, 2013

ALGEBRA DESCRIBING SOFTWARE STATIC MODELS
Elena Chebanyuk

Abstract: Algebra, describing software static models that are represented as the UML-diagrams of classes
packages and components is presented in this paper. The major constituents of the algebra, which rests upon
set-theory tools, are classes, components, packages, abstract classes and interfaces. The operations defined on
these constituents are: inheritance, polymorphism, composition, aggregation and association. The algebra
describing software static models allows: precise a description of design patterns structural constituents; design
formats of files for saving software static models; provide a mathematical apparatus for formalized description of
interconnections between class diagram elements; propose code generation tools while analyzing functional
requirements to application and solve other tasks, requiring analysis of interconnections between constituents of
class diagram.

An analysis of the problem domain - “designing dense layings of cutting schemas” is represented in this paper.
Two subdomains, namely “designing dense layings for leather goods details” and “designing dense layings for
shoe details” are considered. The purpose of this analysis is describing framework of the chosen problem
domain in terms of software static model description algebra. Components of the “abstract factory” design pattern
have been selected to create interconnections between the classes in the problem domain. A diagram of classes
of the problem domain that is designed according to analytical description tis represented.

Keywords: class diagram; design pattern; set-theory tool; software modeling; abstract factory design pattern;
dense laying designing.

ACM Classification Keywords: D.2.2 [Design Tools and Techniques]; D.2.11 [Software Architectures]

Introduction

Software static models are represented as UML-diagrams are artifacts that are used in any technology of
software development. Development of approaches for analytical description constituents of software static
models and interconnections between them will increase the effectiveness of different issues that are solved in
software life cycle processes. Such issues are: saving information about class diagrams and interconnections
between their constituents, identification of design patterns structural components in existing code, elaboration
such analytical aspects as model driven architecture (MDA) and model driven development (MDD), description of
class functionality and other tasks during software designing and reengineering.

Using analytical description of software structural constituents and interconnections between them allows
developing methods for solving tasks that are mentioned above by means of analysis and comparison of
analytical expressions.

Related works

Necessity of development approaches that are connected with the analysis of software constituents is a
prerequisite appearing of works that are devoted to formalization of class diagram description [Zhu, 2012;
Bayley, 2011; Wentao, 2012].

84 International Journal "Information Technologies & Knowledge" Vol.7, Number 1, 2013

Representation of design patterns as algebraic systems is proposed in paper [Zhu, 2012)].

An algebraic system takes into account structural constituents of design pattern, namely classes and interfaces.
Behavioral constituents of design patterns are represented by a set of messages. These messages are used for
information exchanging between objects during solving tasks of design patterns.

Also the analytical description of design patterns constituents while creating their combination is proposed in
paper [Bayley, 2011].

Approach proposing identification of design patterns from existing code by means of interconnections analysis
between components of frameworks and processes was proposed in paper [Wentao 2012]. For representation of
software static models it was proposed to describe a framework as a set of predicates and variables
characterizing a problem domain. Such an approach helps to build behavioral models for research problem
domain processes.

Mathematical apparatus for defining practicability for code reuse by means of mapping ontologies is proposed in
paper [Chang, 2012]. Authors define indexes for mapping of some class diagram constituents (indexes of
matching base and independent classes), documentation, attributes and functional requirements of components.
After comparison of these indexes, the percent of matching a problem domain framework and application is
defined, the practicability of components reuse from the framework is defined.

In papers [Zhu, 2012; Bayley, 2011] classes of design patterns are described as a set named “Classes”. This
representation is too schematic.

Usage of technics for analytical description of class diagrams constituents allows defining roles of classes in a
design pattern, to analyze effectiveness of design patterns combination, to compare predicates variables to
functionality of some class elements and consider new indexes of ontologies mapping.

Task and challenges

Task: design of the algebra for analytical description of software static models, which allows describing complex
diagrams of classes, packages and components as well as operations performed on these components and
interconnections between them.

Challenges: the algebra describing software static models allows:

e precise a description of design patterns structural constituents;

o design formats of files for saving software static models;

o provide a mathematical apparatus for formalized description of interconnections between class diagram
elements. It can serve as a base to prove theorems, verifying statements and so on;

e propose code generation tools while analyzing functional requirements to application. Doing this it is
necessary to match software functional requirements with components of class diagram;

e solve other tasks, requiring analysis of interconnections between constituents of class diagram, for
example code reuse task.

Algebra describing software static models

For representing of the algebra for description of software static models describe main constituents of algebra
and operations that are performed on them.

International Journal “Information Technologies & Knowledge" Vol.7, Number 1, 2013

1. Constituents of the algebra
1.1 Class

Define a class C as a subset of cartesian product of the following sets: properties — A, fields — X and methods -
B

CcAxXxB
{ (1)

AxXxB={<a;,X:;B;><0a;,X:,B8, >,< 0, X0,8; > ... <0y, X By >}

The power of such a set is denoted as follows |A><X><B| =n-m-k, where n — is a number of class C

properties, m — is a number of its fields, k — is a number of methods. Respectively number of tuples in (1) defined
by number of properties, fields and methods which interact with each other. Every triple can contain one empty
set. All properties and method of a class C with modifier private are denoted as follows C”™** | public - CP“*"®
and protected - C*** rgspectively. Class C is denoted as follows:

C = CPblc |, gPivate o protected @)
At least one set from the expression (2) can’t be empty.
All elements of a set X (fields of class C) are related to C*™** | that is

CPivate _ private 3¢ 3)

If when the description starts the name of class is known class is denoted as follows C(name).

1.2 Abstract class

Denote an abstract class as C?. All properties and methods of a class C?# with modifier abstract are denoted as
follows C st

An abstract class has all properties of an ordinary class (1), only set C**"* shouldn’t be empty, that is
cret » & When tuples of an abstract class (1) are formed, two elements from three may be described as
empty sets.

1.3 Interface
Interface is denoted as | and described as a set of methods B', / = {3’} with empty realization. Every method

J3; corresponds to the condition 3} =@, j =1,...,n" where n' - number of methods in interface I.

{ 1={B'}B' ={B!.51,... 5.}

4
B ={p'|p =2}j=1..n' @)

The note: an upper index in denotation (for instance B’) shows, that component belongs to particular whole (in

our example B’ _ set of methods in interface). A lower index in denotation defines a number of componentin a
set of entities.

1.4 Component

We consider component according to widely used definition of components is the following, due to Szyperski: “A
software component is a unit of composition with contractually specified interfaces and explicit context

86 International Journal "Information Technologies & Knowledge" Vol.7, Number 1, 2013

dependencies only. A software component can be deployed independently and is subject to composition by third
parties[5]".

Denote a set of component classes, as Aand a class from this set as C™ j=1,...,n""™ where n°®™-
number of classes in component. That is:
A={C™ VCF™u..uCTY (5)

1.5 Software module
Consider software module as a set of classes that are gathered in one library.

2. Operation that are performed on algebra constituents

For the description of operations that are performed on classes the term functionality is proposed. Functionality
of a class is denoted as a set of methods that can be called and properties can be set. Functionality of a class C
is denoted as follows F(C).

The purpose of operations that are performed over some class C is spreading of its functionality. Functionality of

)opeartion

some class after performing some operation is denoted as F(C where operation — type of operation that

is performed over class.
That is, spreading of a functionality, after performing some operations is denoted as follows:

F(C)**™" = F(C) U F(C) , (6)
where F(C) - functionality that was added after executing of some operation.

Algebra for description of static software modules defines the following operation: inheritance, polymorphism,
association, aggregation and composition.

2.1. Inheritance
Denote C, as a successor of a class C, . Generalize - in hierarchy of inheritance C; - is a successor of class a

C, number j. (For instance C, - is a successor of a class C, and so on). This is also true for interfaces.

If several classes inherit class C, set of such classes is denoted as E = {C,,,C,,,...,C,,}, where k — is the
number of classes in the set ¢ .

2.1.1 Inheritance of classes
The functionality of a class C, after performing inheritance operation, is denoted as follows:
F(C,)™ = F(C,)U(F(C,)\ F(C,”™)), (7)
where F(C,)™ - functionality of a class C, after performing inheritance operation.
Expression (6) shows that functionality of a successor, namely F(C,) is spread on base class functionality

F(C,), excluding a functionality of base class private methods , namely F(C,”"*).

International Journal “Information Technologies & Knowledge" Vol.7, Number 1, 2013

If C, is a successor number j of a class C,, then its functionality is spread to functionality of all hierarchy

classes F(C,) where i=0,...j-1, excluding their private methods functionality F(C,”"“). It is denoted as
follows:

i=j—1

F(C,)" =F(C;) U(U (F(C,)\ F(C,"™)) (8)

2.1.2. Inheritance of interfaces
When a class C inherits an interface | it is necessary to override all methods of this interface.
B'={p| B #@},i=1,...,n". The functionality of overridden methods is defined as F(B'). That s,

{F(Cpubh’c)inh _ F(cpub/ic) U F(B/) (9)

B ={p/|f =@} =1,...n
If a class C inherits p interfaces (multiply interface inheritance), its functionality F(C”*"°)™ is spread over

functionality of interfaces that are inherited by a class that is:

F(C public)inh F(cpubhc LPJ
~ P (10)

={B B #DYi=1,.

2.2. Polymorphism
Consider three classes in hierarchy C,, C, and C, . A set of methods, that belong to class C, with the modifier

virtual is denoted as follows - C;"™* . Sets of methods, that belong to classes C, (C,) with the modifier override

is denoted as C?*°"™ (C2**"™). Consider the following methods # “* e B, 8 e B® and B € B%,
signatures of methods 8 © e B and g eB® (B e B®) differ only modifiers virtual and override

respectively, and signatures of methods # © € B¢ and g ©* e B fully match.

Functionality of the method F(8%) is denoted as follows F(3%) = F(8), where

Cli=2,p% 20
I'=3._ . ¢ _ c (11)
i=L,p7 =0 and 7 #J
Generalize: functionality of a method < e B%and g9 < C,"™ is denoted as follows: F(8%)=F(B°),

where i =max(89)=@,i=1,...,j .

2.3. Association
Consider two independent classes C| and C!!, that are not interconnected by relationship of inheritance. Define

a setof C} methods in class, that are called from class C! as Q. If classes C| and C!' are interconnected by

88 International Journal "Information Technologies & Knowledge" Vol.7, Number 1, 2013

relationship of association, then the functionality of C} spreads on methods from the set Q. It is denoted as
follows:

F(C)y* =F(C,)uQ,Q = (12)
where F(C!)™ - is a functionality of class C| when it is interconnected by relationship of association with

class C!'.

2.4. Aggregation

Functionality of a class C(') when it is interconnected by relationship of aggregation with class C(')| is denoted as
follows:

F(CLY* = F(C,) U (F(C,)\ F(C,"”"™)) (13)
where F(C})" - is a functionality of class C} when it is interconnected by relationship of aggregation with the

class Cﬁ)'. When object of type C(')| is created in a method of class C! , it is possible to call all methods of this

object C!!, excluding private.

2.5. Composition

Considering, that aggregation and composition relationships are differ by its content, not by structure when
classes C(') and C(')| are interconnected by relationship of aggregation, the functionality of class C(') is spreads
similar to (14) and is denoted as follows:

F(C})™™ = F(C,) U (F(C,)\ F(C," **) (14)
where F(C|)®™ - is a functionality of class C, when it is interconnected by relationship of composition with

the class C/.

Example of describing class diagram for the problem domain “designing dense layings for
cutting schemas”

Describe interconnections between entities of a chosen problem domain in terms of software static model
description algebra.

Consider two subdomains of chosen domain, namely “design dense laying for shoes details” and “design dense
laying for leather goods details”. Laying is basic for designing of layout and sections that are used for cutting
schemas designing.

Classes of the problem domain — “designing of cutting schemas for roller materials” and interconnections
between them are represented in paper [UebaHiok, 2012], mathematical models for estimation of cutting
schemas effectiveness and algorithms of their designing were represented in papers [YynpuHka, 2012;
Yynpurka, 2011; Yebantok, 2008].

In order to define constituents on class diagram it is necessary to make an analysis of problem domain classes
“designing dense laying of cutting schemas” Classes: C(det ail) — represents detail in laying. Representation of

detail was proposed in [Uebantok, 2008]. C(grid) - represents grid of laying. C(algorithm) - represents

International Journal “Information Technologies & Knowledge" Vol.7, Number 1, 2013

algorithm building of grid considering peculiarities and technological limitations of chosen problem subdomain.
C(Laying) - represents a laying.

Define the interconnection between problem domain entities. In order to do this it is necessary to consider the
peculiarities of algorithms allowing to build different types of dense laying.

Statement of problem designing of dense laying for two types of details, having arbitrary configuration of edges:
among double grid layings W=W(a_1,€,§) of polygons S,(«) and S,(B) , having density of laying
5s(W) find layingW" =W(a, ,a, ,g), corresponds to the following condition (pict. 1): the density
§S(W*) of double grid laying for polygons S,(«) and S, (), was built on this grid corresponds the following
statement:

1SH+IS, 1 _ o IS8T 1S 1+]S,]
Sabcd w det W w |[al Xaz]l

5S(W*)=m3x§s(W)=mM§x (15)

Pict. 1. Examples of double grids

At our case a_1 =AD = {a,.a,}, a_2 =AB= {a,,.a,,}, g=AE= {9..9,},S,and S, - closed polygons,
that are represented by details, |S,| and |S, | — squares of these details (pict. 1), S,(«) and S,(B) -
polygons S,(S,)that are rotated on angle «(/), Considering the fact, that | S, | and | S, | are the constant

values, the task can be formulated differently: among all double grids W = W(a_l,a_z,g) , are available for laying

of figures S, () and S,(B), findsuch W' =W(a, ,a, ,g), which determinant has the minimum value.

An alignment of details in laying while cutting schemas of shoes details designing is done using mathematical
apparatus of locus of vector function of dense positioning [Yebantok, 2008]. The condition, proving the existence
of a laying that vectors AD and FE are equal.

While designing cutting schema of leather goods details an alignment of details in laying is due to taking in
accounts linear effects [9]. The best laying is characterized by maximum value of linear effects by height and
weight.

90 International Journal "Information Technologies & Knowledge" Vol.7, Number 1, 2013

Class Laying, namely C(Laying), has the next properties — details that are used for building of a laying,
namely C(det aill), C(detail2); grid for building of a laying, namely C(grid), a percent of material usage,
namely P, square of laying, namely S.

Methods of class laying — an estimation of a percent of usage of material, namely estimate (); creation of a
laying, namely - create(); saving of laying parameters, namely - save(); visualization of laying parameters,

namely - visualize().
Analytical representation of a class C(Laying):

C(Laying) = AxB

A={a,,...,a, | o, = C(detail1), o, = C(detail2), o, = S, o, = C(grid), &, =P} 15
B={4,.....5; | B, = create, §, = estimate, 3, = save, S, = visualize} 16

Considering, that algorithms of designing a layings are different, when laying of different types are built , we
propose the design pattern “abstract factory” for realization software for building dense laying.

From a class C(Laying) we inherit two classes C(Leather _laying) and C(Shoe _ laying) for designing
of laying for shoe and leather goods details respectively.

Then class C(Laying)and its method Create() make an abstract, namely C?(Laying)

Describe classes C(Leather_laying) and C(Shoe_lay ing)_ This classes are designed for creating of

single grid when single laying is created [9]. Laying, were built on single grids, allow to design cutting schemas
with details of one type. Functionality of a class C(Leather _laying)is denoted as follows:

F(C(Leather _laying))"" = F(C(Leather _laying)w C?(Laying))
C(Leather _laying)=B (17)
B = {Create}

Class C(Shoe _ laying) is described similarly to statement (17).
Consider, that in order to design laying for two types of details, one need usage additional operations in
comparison with process of single grid design. That is why classes C(Leather _layng _two) and
C(Shoe _laying _two) are successors of classes C(Leather _laying) and C(Shoe _laying) -
respectively.
Functionality of a class C(Leather _layng _ two) is denoted as follows:
F(C(Leather _laying _two))™ = F(C(Leather _laying _two))u F(C(Leather _laying))
C(Leather _laying _two)=B (18)
B = {Create}

Functionality of a class C(Shoe _ laying _two)is described similarly to statement (18).

In order to design pattern “abstract factory” define interfaces, are used for designing of layings. Doing this
analyze the processes of problem domain [Yynpunka, 2012; Yynpunka, 2011; Yebaniok, 2008] and
interconnections between classes.

International Journal “Information Technologies & Knowledge" Vol.7, Number 1, 2013

Define interfaces: interface for obtaining of a single grid - /(Get _ V'), interface for obtaining of a double grid -
I(Get _W). It is necessary to define different interfaces due to fact that different parameters are calculated
when layings of different types are designed.

Design a class diagram for solving task of chosen problem domain using design pattern “abstract factory”.
“Abstract factory” needs when different types of layings and vectors are created. In order to do this describe
interconnections between classes, using terms of the algebra for description of software static models.

C?(Laying)= AxB,A={a,,...,cs}
C(Layingy** = {8, | §, = Create)
F(C?(Laying))™ = F(C*(Laying))u I(Get _V)uUl(Get _W)

F(C(Leather _laying))™ = F(C(Leather _laying))u F(C?(Laying))
F(C(Leather _laying))®* = F(C(Leather _laying))u Q,
Q={p,| B, =Get _single _grid} j, € Leather _V

F(C(Leather _laying _two))™ = F(C(Leather _laying _two))u F(C(Leather _laying))
F(C(Leather _laying _two))*° = F(C(Leather _laying _two))u Q,
Q={p, | B, =Get _double _ grid} j, € Leather _W

F(C(Shoe _ laying))™ = F(C(Shoe _ laying))u F(C?(Laying))
F(C(Shoe _laying))** = F(C(Shoe _laying))u Q, 19
Q={p,| B, =Get _single _grid} , € Show _V

F(C(Shoe _laying _two))™ = F(C(Shoe _laying _two))u F(C(Shoe _ laying))
F(C(Shoe _laying _two))** = F(C(Shoe _laying _two))u Q,
Q={p,| B, =Get _double _ grid} p, € Show _ W

I(Get _V)={p,| B, =Get _single _ grid}
F(C(Shoe V)™ = F(C(Shoe _V))Ul(Get _ V)
F(C(Leather _V)Y™ = F(C(Leather _V))ul(Get _V)

I(Get _W)={p,| B, = Get _double _ grid}
F(C(Shoe _W))™ = F(C(Shoe _W))uIl(Get _W)
F(C(Leather _W))" = F(C(Leather _W))ul(Get _W)

92 International Journal "Information Technologies & Knowledge" Vol.7, Number 1, 2013

The statement (19) represents only those classes and interconnections between them of chosen problem
domain, which are essential for design pattern “abstract factory”. Class diagram of chosen problem domain is
represented on pict. 2.

<abstract> Laying
-C(detail)
-C(detail)

-C(grid)

-p

-Square «interface»
+Create() get_V
+Save() +Get_single_grid()

+Visualize()
+Estimate() ZF |

+get_V()
+get_W()
é $ | Shoe_V Leather_V |
[1 j
Leather_laying Shoe_laying +Get_single_grid() +Get_single_grid()
Create() Create() «interface»

get_ W
Zr Zr +Get_double_grid()
Leather_laying_two Shoe_laying_two ZF L
+Create() +Create() | Shoe_W Leather_ W

+Get_double_grid() +Get_double_grid()

Pict. 2 Class diagram of the problem domain “designing dense laying for cutting schemas”

Conclusion

The algebra describing software static models is represented in this paper.

In comparing with description of classes, that was proposed in papers [Zhu, 2012; Bayley, 2011; Wentao, 2012],
statements (1)-(14) allow to obtain detailed description constituents of class diagram and interconnections
between them, propose analytical description of design patterns and their composition.

Detailed representation of a class diagram allows usage the algebra describing static software models while
analyzing practicability of code reuse or designing new software modules or components.

For example, in paper [Chang, 2012] it is possible to make more precise analysis of software modules by means
of increasing number of comparing indexes.

Also using the statements (1) - (14) allows to propose format of files, that can be used for saving information
about software static models and methods of their visualization.

Usage of the algebra for description software static models with technics of functional requirements analysis
allows designing class diagrams by means of analysis problem domain (19) or application processes.

International Journal “Information Technologies & Knowledge" Vol.7, Number 1, 2013

Further exploration

Using the algebra describing software static models allows to represent frameworks analytically by means of
grouping class diagrams constituents according to design patterns and propose a method of matching problem
domain processes to constituents of a class diagram while designing frameworks.

For this it is necessary to propose a concept of mapping processes characteristics and design patterns. This
concept also allows defining necessary components from a framework can be reused while analyzing functional
requirements application.

Bibliography

[Bayley, 2011] I. Bayley, H. Zhu. A Formal Language for the Expression of Pattern Compositions. Intl J. on Advances in
Software 4(3&4), Pages 354 — 366, 2011.

[Chang, 2012] S. Chang, F. Colace, M. Santo, E. Zegarra, Y. Qie. An Approach for Software Component Reusing based on
Ontological Mapping The 24th International Conference on Software Engineering & Knowledge Engineering Pages 180-
187, 2012

[Kung-Kui, 2006] L. Kung-Kiu, M. Ornaghi, Zh. Wang. "A software component model and its preliminary
formalisation." Formal Methods for Components and Objects. Springer Berlin/Heidelberg, 2006.

[Wentao, 2012] Wentao Ma, Xiaoyu Zhou, Xiaofang Qi, Ju Qian, Lei Xu, Rui Yang Identification of design patterns using
dependence analysis The 24th International Conference on Software Engineering & Knowledge Engineering, Pages
289-292, 2012.

[Zhu, 2012] H. Zhu, |.Bayley. An algebra of design patterns. ACM Transactions on Software Engineering and Methdology in
press, 2012.

[Yebaniok, 2008] O.B. YebaHtok, B.l. YynpuHka MeTogmka aBTOMATUYHOI NOBYLOBM PO3KPIMHWX CXeM ANs ABOX BUAB
MIOCKKUX reoMeTpuyHmMX 0b'ekTiB. Mpobnemm nporpamysaHHs. - 2008. — Ne2-3. — C. 724-730.

[Yebaniok, 2012] O.B.Yebantok, B.I.YynpuHka Metoa gomeHHoro aHanisy Ans e(hekTMBHOrO MOAEMIOBAHHS MPOLECIB Mpu
NPOBELEHHI EKCNEPUMEHTIB 3 BUKOPUCTAHHAM NporpamHoro 3abeaneyenHs. Mpobnemu nporpamysaHhs. - 2012, — Ne2-
3.-C. 168- 173.

[YynpuHka, 2011] B.I. Yynpurka, O.B. YebaHtok ABTOMATU30BaHE NPOEKTYBaHHS PaLjiOHANbHUX CXEM PO3KPOK PYNOHHMX
Matepianis Ha Aetani BupobiB wkipranantepel. BicHuk CxigHOYKpaiHCbKOro HaLjioHarnbHOro yHiBepeuteTy iM. dans. —
2011. = Ne7(2). - C. 46-50.

[Uynpunka, 2012] B.M. YynpuHka, E.B. YebaHiok Matematnyeckas mogenb OLeHKM 3GDEKTUBHOCTM packniagok npu
MOCTPOEHWM PACKPOMHBIX CXEM PYMNOHHbIX MatepuanoB. TexHWYeckoe perynupoBaHue: 6a30Basi OCHOBA KadyecTBa
TOBapOB W ycnyr. :36. Hayy. Tpydos — LWaxtu OPTYEC , 2012. - C.193-198

Authors' Information

Elena Chebanyuk — lecturer in National aviation university, associate professor of software
engineering department, Ukraine; e-mail: chebanyuk.elena@gmail.com

Major Fields of Scientific Research: Domain analysis, Domain engineering, Code reuse.

