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Abstract: General framework of Least Square Method (LSM) generalization is represented in the paper. Namely, 
- generalization on vectors and matrixes case of the observation. Also, some principal examples are represented 
in the article. These examples illustrate the advantages of LSM in the case under consideration. General 
algorithm LSM with matrixes observations is proposed and described in step-by-step variant. The examples of 
method applications in macroeconomics and TV-media illustrate the advantages and capabilities of the method.  
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Introduction 

The Least Squares Method (LSM) is reliable and prevalent means to solve prediction problems in applied 

research and in econometrics particularly. It is used in the case when the function is represented by its 

observations 1( , ), ,i ix y i N . Commonly used statistical form of LSM is called Regression Analysis (RA). It is 

necessary to say, that RA is only statistical shape for representing the link between the components 

Niyx ii ,1,,   in observations 1( , ), ,i ix y i N . So using RA terminology of LSM for solution of function 

estimating problem, and correspondingly, - prediction problem, is only the form for problem discussing.  

It is opportune to note, that the LSM is equivalent to Maximum Likelihood Method for classic normal regression. 

Linear regression (LA) within RA has the advantage of having a closed form solution of parameter estimation 

problem and prediction problem. Real valued functions of vector argument are the object of investigation in RA in 

general and in LA in particular. Such suppositions are due to technical capabilities of technique for solving 

optimization problems in LSM. This technique is in the essence an investigation of extremum necessary 

conditions. This remark is entirely true for yet another widely used assumption, namely, full column rank 

assumption for appropriate matrix, which ensure uniqueness of parameter estimation. It’s interesting that another 

technique: Moore – Penrose pseudo inverse (M-Ppi) ([Moore, 1920; Penrose,1955]) provides a comprehensive 

study and solution of parameter estimation problem. 

Below in the article the results developing M-Ppi technique are presented. These ones enable operation with 

matrices as with real valued vectors and in optimization problem of LSM. And, as the consequence, the results 

enable designing of LSM for observations with matrix components. It is interesting to note, that such results would 

require the development of a full arsenal M-Ppi conception for objects in matrix Euclidean spaces. But in the case 

under consideration manage to use M-Ppi results for Euclidean spaces of real valued vectors to solve the 

problem of LSM estimation for matrixes observations. Correspondent results are also represented below as well 

as illustration of its applications for predicting in macroeconomics of Ukraine and in estimating of TV audience.  
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And the remark in conclusion. Obvious advantage of matrixes LSM, besides the explicit closed estimation form, is 

the fact that matrixes observations preserve relationships between the characteristics of phenomenon under 

consideration. 

Theoretical foundation: the least squares method 

The LSM in its classic version – this is a way to "restore" the numeric functions    ( , ), ,y f x x  from 

parametric function family, when this function is represented by this or that collection observations
1 ( , ), ,x y x y R . «Restored function»   ˆ ˆˆ ( , ) ( , )y f x f x  is defined by choosing appropriate  ˆ  

(estimation of parameter). The value of parameter ̂  and restored function  ˆˆ ( , )y f x l call by its estimation 

correspondingly.  

In the version of the discrete set of observations, a collection of observations (sample) is discrete: 
1 1  ( , ) : , , ,i i i ix y x y R i N  and parameter is real valued vector: 0 2 1      : ( , ,..., )p T

pR . 

"Recovery" can be understood in different ways:  

Establish the true value of the function when the model observation is 0 01   ( , ), , ,i iy f x i N ; 

Approximation of the observed values 1 1  ( , ) : , , ,i i i ix y x y R i N by a function from appropriate 

parametric family: by the choice of appropriate parameters ˆ . Such choice has to be done in such a way that 

the function  ˆ( , )y f x  were the "best" to conform to the observation 1( , ), ,i ix y i N . 

Two previous versions can be combined in a model of observations, which can be described as a model of 

observations with errors:  

0 01     ( , ) , , ,i i iy f x i N , 

1 , ,i i n  interpreted as errors of observations. 

Last model of observations in the version, when 1 , ,i i N - are the values of independent random variables is 

the subject of statistical theory, called regression analysis. 

Problem "restoration of function" within the first model of observations can be reduced to the solution of 

simultaneous equations 

 1 ( , ), ,i iy f x i N  (1) 

In the rest two cases the approximation criteria ( ) are to be determined. 

In the method of least squares such criterion is determined by the formula: 

2

1

 


  ( ) ( ( , ))
N

i i
i

y f x , (2) 

Correspondingly,  ˆ  defined as a solution of the optimization problem of LSM: 

2

1 
 

  

  min ( ) min ( ( , ))
n

i i
i

Arg Arg y f x  

2

1 
  

  

   ˆ min ( ) min ( ( , ))
n

i i
i

Arg Arg y f x . 

(3) 
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It is easily to check, that the 0  in the first model (the system of equations (1)) belongs to the set of 

optimization solutions: 

2
0

1 
  

  

   min ( ) min ( ( , ))
N

i i
i

Arg Arg y f x . 

Thus, the recovery function problem for the function presented by its observations in both of the forms discussed 

earlier is reduced to solving an optimization problem (3). 

Thus, in all cases of the recovery (estimation) problem for the function, presented by its observations

1( , ), ,i ix y i N , through parameter estimation ̂ :  ˆ ˆ( , ) ( , )f x f x , ̂ can be described as a solution of the 

optimization problem from (3) and called LSM estimation for parameter or function correspondingly: 

The widespread use of LSM in solving of restoration problem for the function, presented by its observations, is 

determined by its very attractive feature. It is closed form solution for the parameter estimation problem. For a 

family of functions  
1

0

 




 ( , ) ( )
p

j j
j

f x f x , 0 2 1     ( , ,..., )T
p , 

0 1 ( ), ,jf x j p - known function of vector argument x  

Under additional assumption rank X=p. 

Closed formed solution in LR for optimization problem (3) \ is determined by formula 
1 ˆ ( ) ,T TX X X Y  (4) 

where Х – matrix determined by relation 

  1 1 1   ( ) , , , ,j iX f x i N j p , 

Y - vector of observed values of the function: 1 ( ,...., )T
NY y y . 

Constraint rank X=p.is technical, determined only by the solution method for the optimization problem (3) and 

ensure uniqueness Gauss- Markov equation of the extremum necessary conditions for the functional in (2).  

Functional ( ) of LSM for LR turns to the form  
2  || ||Y X . 

Correspondingly, and the optimization problem (3) turns to form of 
2

 
 

 
  min ( ) min || ||Arg Arg Y X . (5) 

Optimization problem (5) is essential element of pseudo inverse definition X 
 of a matrix X by Penrose 

[Penrose, 1955] (M-Ppi). By this definition pseudo inverse X 
for 0Y  is determined as norm minimal solution 

of optimization problem (5): 

2ˆ min|| ||
ˆarg min || ||

Arg Y X
X Y


 






 


. 
This definition is only one from more than ten or more equivalent definitions of M-Ppi. M-Ppi technique enables 

comprehensive solution of optimization problem (3) in form (5) (see, for example [Кириченко, Донченко, 2005]): 

 2


       


        min || || ( ) : ( ) ,p p

p pArg Y X X Y E XX R X Y E XX R , 

with M-Ppi X for matrix X . For classical conditions: under condition rankX p  matrix 
TX X  invertible 
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1  ( )T TX X X X , 0    p pXX E E XX , 

   2 1


    


     min || || ( ) ( )p T T

pArg Y X X Y E XX R X Y X X X Y  

Preferential use estimates from (4) and the equation of Gauss - Markov is quite restrictive in applying LSM, while 

advanced M-Ppi technique, as it mentioned above,   enables comprehensive solution of an optimization problem 

(5). Such preferences of LSM users seems to be the results of habit and the fact of clarity of the source of 

Gauss - Markov equation as well as the fact, that M-Ppi technique require additional efforts for its mastering and 

applying.  

Actually, directly Penrose [Penrose, 1955] pseudo inverse matrix A  tо m n  matrix А defined as n m - 

matrix, which specifies a linear operator  : m nA R R , whose action for arbitrary 0 ,my R y  is defined by  

2

2





 


min|| ||

min || ||
nz R

x Arg Az y

A y arg x . 
(6) 

So, by this definition, A y  associated with SLAE (system of linear algebraic equations) Ax y  and defined as 

smallest norm solution of the optimization problem of best quadratic approximation of the right side of SLAE 

values of the left side: 
2 


  min || || , ,

n

m n m

x R

Arg y Ax A R y R . (7) 

The set of all solutions of the optimization problem (7) (see, for example, [Кириченко, Донченко, 2005]) is 

determined by relation  

 2    


        min || || ( ) : ( ) ,

n

n n
n n

x R

Arg y Ax A y E A A R x x A y E A A v v R . (8) 

M-Ppi efficiency owes singular valued decomposition (SVD) in its special tensor product form (will be denoted as 

SVDtp) (see, for example, [Донченко, 2011]): any m n  matrix A is represented by singularities of two matrixes

,T TA A AA : by orthonormal collections of eigenvectors 1 1   , , , , ,n m
i iv R i r u R i r  of ,T TA A AA  

correspondingly and common collection of correspondent nonzero eigenvalues 
2 2
1 ... 0,r r rankA     : 

1




  ,
r

T
i i i

i

A u v  

1
 

  , , ,
T

i i
i i

i i

Av A u
u u i r . 

For another definitions of SVD see, for example, [Алберт, 1977].  

M-Ppi definition by SVDtp among more than a dozen other equivalent, is represented by equality:  

1

1

 



 
r

T
i i i

i

A u v
 

M-Ppi is even more than just a tool for working with only vector objects. It provides a means for the manipulating 

with matrixes. Particularly, M-Ppi technique for real valued vectors enable comprehensive solution of optimization 

problem type of (3) in form (5) for matrix objects:  
2



 


  min || || , ,

n p

m p m n
tr

X R

Arg Y AX Y R A R , (9) 

where the trace norm || ||tr  generated by trace scalar product: 

  
,

( , ) T T
tr ij ij

i j

C D c d trC D sum of the diagonal elements of the matrix C D         
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Full solution of the optimization problem (9) is given by the theorem 1 below (for example, [Донченко, 2011]). 

Theorem 1. For any m n  matrix A 

 2



     


        min || || ( ) : ( ) ,

n p

n n n n
tr n n

X R

Arg Y AX X Y E A A R Z Z X Y E A A V V R . (10) 

As in the vector case, the solutions of matrix optimization problem (10) coincide with the set of all solutions of 

matrix algebraic equations relatively X: 

      , , ,AX Y A m n Y m p X n p , 

when such solutions  exist. 

Optimization problems and its solutions (8), (10) for, correspondingly, vector and matrix  objects, namely, the 

problem of the best quadratic approximation of the right part of linear equation by the left one, constitute the basis 

for the least squares method for vector and matrix of observations. “Vectors” or “matrixes” case for observations 

(x,y) means, that both its components:, x, y - are simultaneously the vectors or the matrixes correspondingly 

under supposition that relation between them determined by the components a m n  matrix A. 

Theorem 2. Let the collection of vector pairs 1  ( , ) : , , ,n m
i i i ix y x R y R i N  or matrix pairs 

1   ( , ) : , , ,n p m p
i i i iX Y X R Y R i N  are an observations of linear operator, defined by m n - matrix

 : n p m pA R R .  

Then the set of LSM estimation of the operator A, is determined by the set of optimization problem solutions 


min ( )

m nA R

Arg A  

with 

2

1

2

1






   

  





( , ) ,   

( )

( , ) ,  ma  

N

i i i i
i

N

i i i i tr
i

y Ax y Ax vector observations

A

Y AX Y AX trix observations

 

is equivalent to optimization problem of the best quadratic approximation of the right hand part of algebraic 
equation T T TX A Y by it left hand part respectively matrix TA  with matrices ,X Y  defined by the 
components of the observations accordingly  to the relations: 

1

1

( ... )  

( ... )
N

N

x x vector observation
X

X X matrix observation


  

 
 

, (11) 

1

1

( ... )

( ... )
N

N

y y vector observation
Y

Y Y matrix observation


  

 
 

. (12) 

Proof. Indeed, It is easy to verify, that simultaneous equations: vectors 1 , ,i iy Ax i N  or matrixes 

1 , ,i iY AX i N  , - in the observations model, are equivalent to matrix equations correspondingly: 

1 1 1      ( ... ) ( ... ) ( ... )N N Ny y Ax Ax A x x , 

1 1 1      ( ... ) ( ... ) ( ... )N N NY Y AX Ax A X X , 
which follows from the definition of matrix algebra operations 

Thus, in the notation (11), (12) observation models for both types of observations are represented by matrix 

equation AX Y  with known matrixes X,Y and unknown matrix A.  

Besides 
2

  
  min ( ) min || ||

m n m n
tr

A R A R

Arg A Arg AX Y  
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So, equivalently 
2 2

    
    min ( ) min || || min || ||

m n m n T n m

T T T
tr tr

A R A R A R

Arg A Arg AX Y Arg Y X A , (13) 

which proves the theorem. 

Theorem 2. The set of all solutions for LSM - estimation of the linear operator by its vectors or matrixes 

observations is given by the relation: 

 


  


     min ( ), ( ) : ( ),

m n

m n
n

A R

Arg A A A YX V E XX V R , (14) 

Proof. The proof follows directly from theorem 1, relation (10), that describes the solution of matrix algebraic 

equations through obvious changes in notation and subsequent transposition using commutative property for M-

Ppi for matrix and its transpose. 

General algorithm of LSM with matrix observations  

LSM wit matrixes observation for prediction is implemented in the usual way: by estimation of the function 

(operator) and using of the estimation on the appropriate argument. Observations, necessary for the estimation 

procedure to be applied, should be constructed on the basis of a data available. It is the first step of the algorithm 

proposed. 

Step 1. Constructing the matrices components of observations. This step is performed on the based on 

statistical data by its aggregating firstly in vector and then - in matrixes 1 2, ,..., kR R R . Such two – step procedure 

uses natural elements of phenomenon description. Vector constituents as a rule are a collection of that or those 

characteristics of phenomenon under consideration which corresponds to fix moments of time. These vectors 

constituents which correspond some “time window” are aggregated in matrix. Then the “time window” is shifted 

and new matrix is built, and so on. 

Step 2. Constructing the observations. The matrixes 1 2, ,..., kR R R being built the observation pairs ( , )j jX Y  

are built by consequence elements of 1 2, ,..., kR R R : 1 1 1  ( , ) ( , ), ,j j j jX Y R R j k . 

 

Fig. 1. Aggregated matrixes and observations 

Step 3. Parametrization of the model. The relationship between matrixes elements of observations is 

established by matrix equation Y AX  with matrix A as a parameter.  

Step 4. LSM – estimation. The essence of this step is constructing the LSM-estimation accordingly to (14) by 

choosing the one with minimal norm: 

Â YX , (15) 

X1 Y1 

X* 

R1 R2 R3 

X2 Y2 
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Step 5. Constructing the prediction formula. Prediction problem solution, based on the estimated operator Â

is standard: for any appropriate matrix argument X* predicted Y* is defined by relation * *ˆY AX . 

Step 6. Calculations and the accuracy of prediction. The accuracy of prediction in economic research, as a 

rule, is estimated by formal criterion of accuracy called “absolute percentage error (APE)”, defined by the relation

1


 
ˆ

, ,t t

t

z z
APE t T

z
, where tz  - the actual value of the index at the time t , ˆ

tz  - prognostic value of the 

index at the time t . 

It is generally accepted that the value of APE which is less than 10%, corresponds to high prediction accuracy, 

so, values  from 10 to 20% is interpreted as good prediction accuracy, values from 20 to 50% are considered to 

be satisfactory, more than 50% - unsatisfactory prediction accuracy  

There are some examples that illustrate the method below. Some more examples one can find in [Donchenko, 

Nazaraga, Tarassova, 2013]. 

Example 1: prediction economic indicators 

In this example, the statistical data of the State Statistics Service of Ukraine was used [Ukrstat].  

As described in [Хаpазiшвiлi, 2007], the regression methods most often used to predict of economic indicators in 

the normal way. In this example, the theory of matrixes LSM (Sections 1) was used.  

In particular, Table 1 - 3 presents the value of gross domestic product (GDP), wages of employees (WE), final 

consumption expenditure (FCE), exports of goods and services (Е) and imports of goods and services (І) for the 

2007 – 1 quarter 2013 (1q2013) years (quarterly and annual data at current prices).  

Table 1. The value of 5 indicators for 2007 - 2008 years (at current prices; mln.UAH) 

  
1 quarter 

2007 
2 quarter 

2007 
3 quarter 

2007 
4 quarter 

2007 
Total 
2007 

1quarter 
2008 

2 quarter 
2008 

3 quarter 
2008 

4 quarter 
2008 

Total 
2008 

GDP 139444 166869 199535 214883 720731 191459 236033 276451 244113 948056
WE 69078 82021 91922 108915 351936 100492 116441 121522 132009 470464
FCE 112494 130245 140935 174907 558581 161565 182154 194262 220921 758902
Е 67513 79664 88491 87537 323205 88516 116640 132177 107526 444859
І -76022 -85992 -93895 -108464 -364373 -110802 -135800 -144433 -129553 -520588

 

Table 2. The value of 5 indicators for 2009 - 2010 years (at current prices; mln.UAH) 

 
1 quarter 

2009 
2 quarter 

2009 
3 quarter 

2009 
4 quarter 

2009 
Total 
2009 

1 quarter 
2010 

2 quarter 
2010 

3 quarter 
2010 

4 quarter 
2010 

Total 
2010 

GDP 189028 214103 250306 259908 913345 217286 256754 301251 307278 1082569
WE 99206 111616 114251 126270 451343 114062 133690 139108 153791 540651
FCE 172426 188041 196074 216285 772826 194511 216027 232397 271295 914230
Е 86994 95390 114962 126218 423564 112105 134553 145563 157144 549365
І -92892 -96846 -116057 -133065 -438860 -114550 -131242 -156102 -179050 -580944

 

Table 3. The value of 5 indicators for 2011 – 1q2013 years (at current prices; mln.UAH) 

 
1 quarter 

2011 
2 quarter 

2011 
3 quarter 

2011 
4 quarter 

2011 
Total 
2011 

1 quarter 
2012 

2 quarter 
2012 

3 quarter 
2012 

4 quarter 
2012 

Total 
2012 

1 quarter 
2013 

GDP 261878 314620 376019 364083 1316600 293493 349212 387620 378564 1408889 301598
WE 135831 155367 158186 178727 628111 158145 180432 179944 199638 718159 165337
FCE 236580 268688 285548 314385 1105201 272970 311851 328173 356607 1269601 291388
Е 156545 179626 184258 187524 707953 165810 181413 188467 181657 717347 162250
І -173046 -187916 -202131 -215935 -779028 -186323 -215091 -214364 -219616 -835394 -180530
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The use of the algorithm 

1A. Indicators prediction for 2011-2012 years on the basis of 2007-2010 years.  

1. Based on table 1 obvious way form a matrix of observations 1R , based on table 2 – matrix 2R , based on 

table 3 – matrix 3R . 

2. Pair of input output matrix data 1 1( , )X Y  will have the form 1 2( , )R R .  

3. Мatrix 1Â  (see (15)), obtained from the equation 1 1 1 :Y A X   

1

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

,472791 4,27 925 ,44387 2,83749 4,41 361

,53 49 3,94 514 ,71641 2,13 856 2,325999
ˆ ,79734 5,886174 ,49137 3,7 521 4,549 89

, 71931 ,956233 ,215418 ,572184 ,742387

,34424 2, 97631 1,975 2 ,54289 ,958

A


 

  

    84

 
 
 
 
 
 
 
 

 

4. From the equation * *ˆY AX  calculate matrix predictive indicators *Y , 2*X X .  

0 00 0 0 0 0

0 0 0 0

0 0 0

273694, 338 5,3 333617,9 337446,1 1282763,3 316432,6 39945 ,3 35796 ,9 3379 6,6 141175 ,4

136422,5 169529,1 151972,4 164184,7 6221 8,7 167281,7 217282,3 168935,4 167 3 ,4 72 529,8

248255,2 3 6758,3 27458 ,8 292 74,4 112166 0

0 0 00 0 0

0 0 0 00        

8,7 296834,3 377567,3 293639,5 294664,7 12627 5,8

126419,3 145322,3 149113,3 159464,7 58 319,6 1457 4,8 1724 , 172152, 184595,4 674852,2

155678,3 169885,3 184891,2 1927 5,1 7 3159,9 17 727,7 181818,3 2 242,7 232 0

 
 
 
 
 
 
  626, 785414,8

 

5. For matrices predictive indicators *Y  and actual indicators 2011 - 2012 years 2Y  calculate the matrix APE: 

7 82 65 0

0

0 0

0 0

4,51% 7,43% 11,28% 7,32% , % , % 14,39% 7, % 1 ,74% , %

,44% 9,12% 3,93% 8,14% , % 5,78% 20,42% 6,12% 16,33% , %

4,93% 14,17% 3,84% 7,1 % , % 8,74% 21,07% 1 ,52% 17,37% , %

19,24% 19,1 % 19, 7% 14,96% , % 12,13% 4,97%

2 57 0 20

0 96 0 33

1 49 0 54

18 03

0 0 0 0

8,66% 1,62% , %

1 , 4% 9,6 % 8,53% 1 ,76% , % 8,37% 15,47% 6,59% 5,92% , %

 
 
 
 
 
 
 
 

5 92

9 74 5 98
 

In accordance with the submitted values matrix APE, error prediction GDP in 2011 (as a whole) was 2,57%, WE - 

0,96%,  FCE - 1,49%, Е - 18,03%, І - 9,74%, error prediction GDP in 2012 (as a whole) was 0,20%, WE - 0,33%, 

FCE - 0,54%, Е - 5,92%, І - 5,98%, and excess error 20% for some mentioned quarterly indicators can be 

explained by the fact that prediction is used, in particular, data the years of crisis 2008 - 2009.  

1B. Indicators prediction for 2013 year on the basis of 2011-2012 years.  

1. Data of 2011 year (Table 3) form a matrix 1R , data of 2012 year (Table 3) form a matrix 2R , data of 2013 year 

(Table 3) form a matrix 3R . 

2. Pair of input output matrix data 1 1( , )X Y  will have the form 1 2( , )R R .  

3. Мatrix 1Â  (see (15)), obtained from the equation 1 1 1 :Y A X   

1

0 151580 0 290005

0 120202 443779 0 498337

0 0 282772 018491

0 0 0 0 1 0

0 274726 0 110891 1

,636101 0, ,160623 1,242501 0,

, 0, ,343330 0, 0,172744
ˆ ,052472 0,519415 ,596880 0, -0,

, 33165 ,444692 ,527290 ,253027 ,944773

,058681 -0, , ,4

A





   

 020427 ,183491
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4. From the equation * *ˆY AX  calculate matrix predictive indicators *Y , 2*X X .  

0 0 0

0 0 0

0 0 0

0 0 0 0

3188 1,99 362421,85 393132,98 3758 5,98 145 162,79

179 64,63 198412,63 2 2824, 3 218113,67 798414,96

31 8 4,97 353456,17 366941,54 391838,84 1423 41,53

1598 3,61 174273,5 172762,31 14574 ,75 65258 ,17

197286,77 212712,  0 068 218667,93 21 819,92 839487,3

 
 
 
 
 
 
    

 

5. First column of the matrix of errors APE is calculated from the matrix of the forecast indicators 

values *Y  and actual data for 1q2013. Thereby, the prediction error of GDP (1q2013) - 5,7%, 

WE - 8,3%, FCE - 6,66%, Е - 1,51%, І - 9,26%. 

In general, comparing the results with the values of the relevant indicators the consensus 

prediction [Me], it can be argued about the competitiveness of the proposed article approach for 

forecasting macroeconomic indicators. 

Example 2: prediction of TV audience performance 

Media planning is based on the use of predictive indicators of TV audience. All players of the advertising market 

depend on the accuracy of TV audience indices predictive. In practice, five basic TV indicators are forecast:  

 share of TV channel audience (share of the channel - sc) – this index determines the amount of viewers 
who watched TV from the total number of viewers at the investigated time period;  

 rating of TV channel audience (ratings of the channel - rc) - this index determines the amount of TV 
audience, it takes into account the duration of watching TV every spectator in the analyzed period of 
time; 

 TotalTV rating (rt) - this index determines the total size of the television audience, it takes into account 
individual TV time watching by every spectator in the analyzed time period; 

 advertising TV audience rating of the channel (an advertisement rating - ra) - this index determines the 
size of TV advertising audience it takes into account the duration of advertisement  viewing by every TV 
viewers; 

 break-factor (bf)- this index determines the proportion of the audience that stays for advertising viewing.  

Data description 

We used five indicators data for 2013 year by months and three time slots (7:00-13:00, 13:00-19:00, 19:00-

25:00).  

The result of observations for this period of five television performance (audience share of channel sc, rating of 

channel rc, TotalTV rating rt, ratings of channel advertising ra and break-factor bf) forms the matrix of monthly 

observations  21,1,

)(

)(

)(

)(

)(

4

3

2

1





















 i

ir

ir

ir

ir

ir . 

Respectively 21,1,)( 1 iir  — is the row-vector of monthly TotalTV raiting; 21,1,)( 2 iir  — is the row-vector of 

monthly data of channel audience share; 21,1,)( 3 iir  — is the row-vector of monthly data of channel rating; 

21,1,)( 4 iir  — is the row-vector of monthly advertising raiting data, 21,1,)( 5 iir  — is the row-vector of 

0

0

5,7 %

8,3 %

6,66%

1,51%

9,28%
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monthly break-factor data. These monthly data vectors for a given period (in our case – 7 months) naturally 

organizing the matrix of observations 21,1),( iiR .  

 

Table 4. TV data perfomance by months and time slots 

 

To apply the theory of pseudo inverse we use the signs of Sections 1 and construct from the observations matrix 

the matrix pairs of input and output data of our model. We grouped the observational data matrix 21,1),( iiR  

in the matrix 1 2 3R ,R ,R  as follows 

 
 
 

 .)21(...)19(

............................

,)9(...)7(

,)6(...)4(

,)3(...)1(

7

3

2

1

rrR

rrR

rrR

rrR















 

Then the matrix pair 1 1(X ,Y ) , on which evaluation matrix of the model parameters Â  will be calculated from the 

matrix equation Y = AX , is as follows 1 1 1 2(X ,Y ) = (R ,R ) . The matrix pair 2 2(X ,Y )  is used to construct the 

forecast indicators matrix *Y  from the matrix equation ˆ*
2Y = AX  and accuracy estimation of prediction *Y  by 

the criterion of accuracy 
*

2

2

Y -Y
APE =

Y
, where 2 2 2 3(X ,Y ) = (R ,R ) . Then 

),(),(),(),( 43333222 RRYXRRYX   

),(),(),(),( 54444333 RRYXRRYX   

),(),(),(),( 65555444 RRYXRRYX   and so on. 

Period Time slot rt sc rc ra bf 

Jan.2013 
07:00 - 13:00 11,3 8,1 0,9 0,8 0,8 
13:00 - 19:00 18,9 9,1 1,7 1,3 0,8 
19:00 - 25:00 28,2 8,7 2,5 1,8 0,7 

Feb.2013 
07:00 - 13:00 10,9 7,4 0,8 0,6 0,8 
13:00 - 19:00 17,2 7,7 1,3 0,9 0,7 
19:00 - 25:00 27,5 8,4 2,3 1,6 0,7 

Mar.2013 
07:00 - 13:00 11,5 8,0 0,9 0,7 0,8 
13:00 - 19:00 17,6 8,6 1,5 1,0 0,7 
19:00 - 25:00 27,7 9,4 2,6 1,9 0,7 

Apr.2013 
07:00 - 13:00 9,4 8,2 0,8 0,6 0,8 
13:00 - 19:00 13,4 10,1 1,4 1,0 0,8 
19:00 - 25:00 24,7 9,9 2,4 1,8 0,7 

May.2013 
07:00 - 13:00 9,1 8,4 0,8 0,6 0,8 
13:00 - 19:00 13,0 10,1 1,3 1,0 0,7 
19:00 - 25:00 22,5 9,6 2,1 1,6 0,7 

Jun.2013 
07:00 - 13:00 8,3 7,7 0,6 0,5 0,8 
13:00 - 19:00 12,4 8,8 1,1 0,8 0,7 
19:00 - 25:00 21,6 9,4 2,0 1,4 0,7 

Jul.2013 
07:00 - 13:00 8,2 7,2 0,6 0,5 0,8 
13:00 - 19:00 11,9 7,9 0,9 0,7 0,7 
19:00 - 25:00 20,6 9,1 1,9 1,3 0,7 
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The use of the algorithm 

1. We constructed the matrix of monthly observations 71,..,RR  on the basis of the matrix of observations 

21,1),( iir  (five basic monthly indicators in 2013(Table 4)) by grouping data. 

2. A pair of input-output data matrices 1 1( , )X Y  takes the form 1 2( , )R R .  

3. Then the matrix of estimates of the model parameters Â , that obtained from the equation 

1 1   Y AX Y AX   






















341.1889.0577.0

846.0126.1288.1

349.0784.0406.1

Â  

4. From the equation * *ˆY AX  calculate predictive indicators matrix *Y , 2*X X .  

11,55 7,29 0,91 0,74 0,81

18,07 7,95 1,51 1,14 0,82

27,98 8,66 2,38 1,70 0,77

5. A comparison of the predictive indicators matrix *Y  and actual performance matrix 2Y  gives a matrix of errors 

APE: 
0,2% 9,2% 1,0% 1,6% 2,0%
2,4% 7,8% 0,3% 8,2% 15,3%
1,0% 8,3% 9,1% 9,3% 7,1%

Similarly, we have continued calculation and got a table of forecast values for five TV media indicators. In the 

same way we got the error matrix table APE (Table 5). 

Table 5. TV data perfomance forecast фтв by month and time slot 
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bf
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M
ar

.2
0

13
 07:00 - 13:00 11,6 7,3 0,9 0,7 0,8 0,2% 9,2% 1,0% 1,6% 2,0% 

13:00 - 19:00 18,1 8,0 1,5 1,1 0,8 2,4% 7,8% 0,3% 8,2% 15,3% 
19:00 - 25:00 28,0 8,7 2,4 1,7 0,8 1,0% 8,3% 9,1% 9,3% 7,1% 

 

  
 

Ap
r.2

0
13

 07:00 - 13:00 12,2 8,5 1,0 0,8 0,9 22,7% 3,8% 21,7% 23,3% 8,0% 
13:00 - 19:00 18,2 9,3 1,6 1,2 0,9 26,2% 8,6% 14,2% 13,5% 11,8% 
19:00 - 25:00 27,9 10,0 2,7 2,1 1,0 11,5% 0,7% 9,3% 14,9% 24,8% 

 

  
 

M
ay

.2
0

13
 07:00 - 13:00 7,8 7,9 0,5 0,5 0,9 15,7% 5,9% 42,5% 27,9% 11,4% 

13:00 - 19:00 12,0 9,5 0,9 0,7 1,1 8,7% 7,2% 51,0% 34,5% 30,5% 
19:00 - 25:00 23,6 9,0 2,1 1,6 0,9 4,9% 6,6% 1,0% 3,0% 18,0% 

 

  
 

Ju
n.

20
13

 07:00 - 13:00 8,9 8,7 0,8 0,6 0,8 5,7% 10,8% 17,2% 16,3% 2,1% 
13:00 - 19:00 12,7 10,2 1,3 1,0 0,7 2,8% 13,0% 15,7% 16,3% 0,4% 
19:00 - 25:00 20,5 9,3 1,9 1,4 0,8 5,4% 0,2% 5,6% 1,7% 7,1% 

 

  
 

Ju
l.2

01
3 

07:00 - 13:00 7,6 7,3 0,6 0,5 0,8 7,6% 1,1% 5,5% 5,8% 2,3% 
13:00 - 19:00 11,6 8,2 1,0 0,7 0,8 2,8% 3,5% 3,6% 9,3% 9,0% 
19:00 - 25:00 20,7 9,2 1,9 1,4 0,7 0,3% 1,8% 2,4% 1,9% 2,4% 

 

As the АРЕ errors table shows, the average annual forecast indicators error for Mar-Jul.2013 is: 5.9%  – for TV 

channel audience share; 13.3% – for TV channel audience rating; 7.9% – for TotalTV rating; 12.5% – for TV 

channel advertising rating; 10.1% – for break-factor. The average prediction accuracy for all five indicators is 
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acceptable for monthly year forecasts. However, exceeding the 10% threshold accuracy in some months is 

critical and shows the necessity of expert correction.  

Conclusion  

In the article case of matrix of observations for the arguments and values of the renewable function of the linear 

relationship between the components of observation has been considered. 

Based on the matrixes least squares method, approach to prediction of indicators was proposed. 

Testing approach with the use of statistical data of the economic and media indicators was made. 

Results of prediction with available statistics were compared. The proposed approach for finding predictive values 

indicators is competitive. 
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