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Krassimira Ivanova 

 

Abstract: The BigArM is an access method for storing and accessing Big Data. It is under 

development. In this survey we present its mathematical and informational foundations as well as its 

requirements to realization characteristics. Firstly, we outline the needed basic mathematical concepts, 

the Names Sets, and hierarchies of named sets aimed to create a specialized model for organization of 

information bases called “Multi-Domain Information Model” (MDIM). The “Information Spaces” defined 

in the model are kind of strong hierarchies of enumerations (named sets). Further we remember the 

main features of hashing and types of hash tables as well as the idea of “Dynamic perfect hashing” and 

“Trie”, especially – the “Burst trie”. Hash tables and tries give very good starting point. The main 

problem is that they are designed as structures in the main memory which has limited size, especially in 

small desktop and laptop computers. To solve this problem, dynamic perfect hashing and burst tries will 

be realized as external memory structures in BigArM. 
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Introduction 

In this survey we will present the mathematical and informational foundations of a new generation of the 

access methods based on numbered information spaces [Markov, 1984; Markov, 2004]. Firstly we will 

outline the needed basic mathematical concepts, the Names Sets, and hierarchies of named sets 

aimed to create a specialized mathematical model for organization of information bases called “Multi-

Domain Information Model” (MDIM). The “Information Spaces” defined in the model are kind of strong 

hierarchies of enumerations (named sets). Further we will remember the main features of hashing and 

types of hash tables as well as the idea of “Dynamic perfect hashing” and “Trie”, especially – the “Burst 

trie”. Hash tables and tries give very good starting point. The main problem is that they are designed as 

structures in the main memory which has limited size, especially in small desktop and laptop 

computers. To solve this problem, in BigArM dynamic perfect hashing and burst tries will be realized as 

external memory structures. 



International Journal "Information Technologies & Knowledge" Volume 9, Number 3, 2015 

 

 

273

Basic mathematical concepts  

Let remember the some basic mathematical concepts needed for this research [Bourbaki, 1960; 

Burgin, 2010]. 

 is the empty set. 

If X is a set, then r  X means that r belongs to X or r is a member of X. If X and Y are sets, then Y  X 

means that Y is a subset of X, i.e., Y is a set such that all elements of Y belong to X. 

The union Y  X of two sets Y and X is the set that consists of all elements from Y and from X. 

The intersection Y  X of two sets Y and X is the set that consists of all elements that belong both to Y 

and to X. 

The union iI Xi of sets Xi is the set that consists of all elements from all sets Xi, iI. 

The intersection iI Xi of sets Xi is the set that consists of all elements that belong to each set Xi, iI. 

The difference Y\X of two sets Y and X is the set that consists of all elements that belong to Y but does 

not belong to X. 

If X is a set, then 2X is the power set of X, which consists of all subsets of X. The power set of X is also 

denoted by P(X). 

If X and Y are sets, then X × Y = {(x, y); x  X, y  Y} is the direct or Cartesian product of X and Y, in 

other words, X × Y is the set of all pairs (x, y), in which x belongs to X and y belongs to Y. 

Elements of the set Xn have the form (x1, x2, …, xn) with all xi  X and are called n-tuples, or simply, 

tuples. 

A fundamental structure of mathematics is function. However, functions are special kinds of binary 

relations between two sets. 

A binary relation T between sets X and Y is a subset of the direct product X × Y. The set X is called the 

domain of T (X = Dom(T)) and Y is called the codomain of T (Y = CD(T)). The range of the relation T is 

Rg(T) = {y;  x  X ((x, y)  T)}.  

The domain of definition of the relation T is DDom(T) = {x;  y  Y ((x, y)  T)}. If (x, y)  T, then one 

says that the elements x and y are in relation T, and one also writes T(x, y). 

Binary relations are also called multivalued functions (mappings or maps). 

YX is the set of all mappings from X into Y. 
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Xn = X × X × … X × X . 

                    n 

A function (also called a mapping or map or total function or total mapping) f from X to Y is a binary 

relation between sets X and Y in which: 

― There are no elements from X which are corresponded to more than one element from Y; 

― To any element from X, some element from Y is corresponded.  

Often total functions are also called everywhere defined functions. Traditionally, the element f(a) is 

called the image of the element a and denotes the value of f on the element a from X. At the same time, 

the function f is also denoted by f: X  Y or by f(x). In the latter formula, x is a variable and not a 

concrete element from X. 

A partial function (or partial mapping) f from X to Y is a binary relation between sets X and Y in which 

there are no elements from X which are corresponded to more than one element from Y.  

Thus, any function is also a partial function. Sometimes, when the domain of a partial function is not 

specified, we call it simply a function because any partial function is a total function on its domain. 

A multivalued function (or mapping) f from X to Y is any binary relation between sets X and Y. 

f(x)  a means that the function f(x) is equal to a at all points where f(x) is defined. 

Two important concepts of mathematics are the domain and range of a function. However, there is 

some ambiguity for the first of them. Namely, there are two distinct meanings in current mathematical 

usage for this concept. In the majority of mathematical areas, including the calculus and analysis, the 

term “domain of f” is used for the set of all values x such that f(x) is defined. However, some 

mathematicians (in particular, category theorists), consider the domain of a function f: X→Y to be X, 

irrespective of whether f(x) is defined for all x in X. To eliminate this ambiguity, we suggest the following 

terminology consistent with the current practice in mathematics. 

If f is a function from X into Y, then the set X is called the domain of f (it is denoted by Domf) and Y is 

called the codomain of T (it is denoted by Codomf). The range Rgf of the function f is the set of all 

elements from Y assigned by f to, at least, one element from X, or formally, Rgf = {y;  x  X (f(x) = y)}. 

The domain of definition DDomf of the function f is the set of all elements from X that related by f to, at 

least, one element from Y is or formally, DDomf ={x;  y  Y ( f(x) = y)}. Thus, for a partial function f(x), 

its domain of definition DDomf is the set of all elements for which f(x) is defined. 
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Taking two mappings (functions) f: X  Y and g: Y  Z, it is possible to build a new mapping 

(function) gf: X  Z that is called composition or superposition of mappings (functions) f and g and 

defined by the rule gf(x) = g(f(x)) for all x from X. 

An n-ary relation R in a set X is a subset of the nth power of X, i.e., R  Xn. If (a1, a2, …, an)  R, then 

one says that the elements a1, a2 , …, an from X are in relation R. 

Named sets 

The concept “Named set” was defined by Mark Burgin. Here we will follow [Burgin, 2011]. 

Named set X is a triple X = (X, μ, I) where: 

― X is the support of X and is denoted by S(X); 

― I is the component of names (also called set of names or reflector) of X and is denoted by N(X); 

― μ: X  I is the naming map or naming correspondence (also called reflection) of the named 

set X and is denoted by n(X).  

The most popular type of named sets is a named set X = (X, μ, I) in which X and I are sets and μ 

consists of connections between their elements. When these connections are set theoretical, i.e., each 

connection is represented by a pair (x, a) where x is an element from X and a is its name from I, we 

have a set theoretical named set, which is binary relation. 

A name a  I is called empty if μ-1(a) = . 

A named set X is called: 

― Normalized if in X there are no empty names; 

― Conormalized if in X there no elements without names; 

Named sets as special cases include: 

― Usual sets; 

― Fuzzy sets; 

― Multisets; 

― Enumerations; 

― Sequences (countable as well as uncountable) 

etc. 

A lot of examples of named sets we may find in linguistics studying semantical aspects that are 

connected with applying different elements of language (words, phrases, texts) to their meaning [Burgin 

& Gladun, 1989; Burgin, 2011]. 

A named set Y = (Y, , J) is called named subset of named set X if YX, J I, and = μ |(Y,J) 

(μ(Y J)). In this case Y and X are connected by the relation of the inclusion. 
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An ordered tuple of named sets  = [X1, X2, ..., Xk] where for all i=1, ..., k-1 the condition N(Xi)S(Xi+1) 

 is fulfilled is called chain of named sets. 

The number k is called a length of the chain . 

A tuple of named sets 1 = [X, Y1, Y2, ..., Yn] where for all i=1,...,n the condition N(Yi)S(X) is 

fulfilled is called one level hierarchy of named sets.  

If N(Yi) N(Yj) and N(Yi)S(X) for all i=1,...,n, j=1,...,n  than  is a strong one level hierarchy of 

named sets. 

A tuple of named sets 2 = [X, 1,1, 1,2, ..., 1,m] where sub-hierarhyies 1j = [Yj, Z1, Z2, ..., Zk] , 

j=1,...,m are one level hierarchy of named sets is called second level hierarchy of named sets.  

If 1j, j=1,...,m, are strong one level hierarchyies of named sets than 2 is a strong second level 

hierarchy of named sets. 

A tuple of named sets n = [X, n-1,1,  n-1,2, ...,  n-1,l] where  n-1,i , i=1,...,l are n-1 level hierarchyies of 

named sets than n is a n-th level hierarchy of named sets..  

If all sub-hierarhyies of n are strong hierarchyies of named sets than n is a strong n-th level hierarchy 

of named sets. 

Multi-domain information model (MDIM) 

We will use strong hierarchies of named sets to create a specialized mathematical model for new kind 

of organization of information bases. The “Information Spaces” defined in the model are kind of strong 

hierarchies of enumerations (named sets). 

The independence of dimensionality limitations is very important for developing new software systems 

aimed to process large volumes of high-dimensional data. To achieve this, we need information models 

and corresponding access methods to cross the boundary of the dimensional limitations and to obtain 

the possibility to work with large information spaces with variable and practically unlimited number of 

dimensions. A step in developing such methods is the Multi-domain Information Model (MDIM) 

introduced in [Markov, 1984; Markov, 2004]. Below we remember its main structures and operations. 

Basic structures of MDIM 

Main structures of MDIM are basic information elements, information spaces, indexes and meta-

indexes, and aggregates. The definitions of these structures are given below: 

 Basic information elements 
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The basic information element (BIE) of МDIМ is an arbitrary long string of machine codes (bytes). When 

it is necessary, the string may be parceled out by lines. The length of the lines may be variable. 

 Information spaces 

Let the universal set UBIE be the set of all BIE. 

Let E1 be a set of basic information elements. Let 1 be а function, which defines а biunique 

correspondence between elements of the set E1 and elements of the set C1 of positive integer 

numbers, i.e.:  

E1 = {ei | ei  UBIE , i=1,…, m1}. 

C1 = {c1 | ci  N, i=1,…,m1} 

1 E1↔ C1  

The elements of C1 are said to be numbers (co-ordinates) of the elements of E1. 

The triple S1 = (E1, μ1, C1) is said to be а numbered information space of level 1 (one-dimensional or 

one-domain information space). 

The triple S2 = (E2, μ2, C2) is said to be а numbered information space of level 2 (two-dimensional or 

multi-domain information space of level two) iff the elements of E2 are numbered information spaces of 

level one (i.e. belong to the set NIS1) and 2 is а function which defines а biunique correspondence 

between elements of E2 and elements of the set C2 of positive integer numbers, i.e.: 

E2 = {ei | ei  NIS1 , i=1,…, m2}. 

C2 = {ci | ci  N, i=1,…,m2} 

2 : E2↔ C2  

The triple Sn = (En, μn, Cn) is said to be а numbered information space of level n (n-dimensional or 

multi-domain information space) iff the elements of En are numbered information spaces of level n-1 

(set NISn-1) and n is а function which defines а biunique correspondence between elements of En and 

elements of the set Cn of positive integer numbers, i.e.: 

 

En = {ej | ej  NISn-1 , j=1,…, mn}. 

Cn = {cj | cj  N, j=1,…,mn} 

n : En↔ Cn  
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Every basic information element "e" is considered as an information space S0 of level 0. It is clear that 

the information space S0 = (E0, μ0, C0) is constructed in the same manner as all others: 

 The machine codes (bytes) bi, i=1,…,m0 are considered as elements of E0; 

 The position pi (natural number) of bi in the string e is considered as co-ordinate of bi, i.e. 

C0 = {pk | pk  N, k=1,…,m0} , 

 Function 0 is defined by the physical order of bi in e and we have 0 : E0↔ C0. 

This way, the string S0 may be considered as a set of sub-elements (sub-strings). The number and 

length of the sub-elements may be variable. This option is very helpful but it closely depends on the 

concrete realizations and it is not considered as a standard characteristic of MDIM. 

The information space Sn, which contains all information spaces of a given application is called 

information base of level n. The concept information base without indication of the level is used as 

generalized concept to denote all available information spaces. For instance every relation data base 

may be represented as an information base of level 3 which contains set of two dimensional tables. 

 Indexes and meta-indexes 

The sequence A = (cn, cn-1,…,c1), where ci  Ci, i=1, …, n is called multidimensional space address 

of level n of a basic information element. Every space address of level m, m < n, may be extended to 

space address of level n by adding leading n-m zero codes. Every sequence of space addresses A1, 

A2, …, Ak, where k is arbitrary positive number, is said to be a space index. 

Every index may be considered as a basic information element, i.e. as a string, and may be stored in a 

point of any information space. In such case, it will have a multidimensional space address, which may 

be pointed in the other indexes, and, this way, we may build a hierarchy of indexes. Therefore, every 

index, which points only to indexes, is called meta-index. 

The approach of representing the interconnections between elements of the information spaces using 

(hierarchies) of meta-indexes is called poly-indexation. 

 Aggregates 

Let G = {Si | i=1,…,n} be a set of numbered information spaces. 

Let τ = {νij : Si → Sj | i=const, j=1,…,n} be a set of mappings of one "main" numbered information space 

Si  G | i=const, into the others SJ  G, j=1, …, n , and, in particular, into itself. 

The couple: D = (G, τ) is said to be an "aggregate". 
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It is clear, we can build m aggregates using the set G because every information space 

SJ  G, j=1, …, n, may be chosen to be a main information space. 

Operations in the MDIM  

After defining the information structures, we need to present the operations, which are admissible in the 

model. 

In MDIM, we assume that all information elements of all information spaces exist. 

If for any Si : Ei = Ø ˄ Ci = Ø , than it is called empty.  

Usually, most of the information elements and spaces are empty. This is very important for practical 

realizations. 

 Operations with basic information elements 

Because of the rule that all structures exist, we need only two operations with a BIE: 

― Updating; 

― Getting the value. 

For both operations, we need two service operations: 

― Getting the length of a BIE; 

― Positioning in a BIE. 

Updating, or simply – writing the element, has several modifications with obvious meaning:  

― Writing as a whole;  

― Appending/inserting;  

― Cutting/replacing a part; 

― Deleting. 

There is only one operation for getting the value of a BIE, i.e. read a portion from a BIE starting from 

given position. We may receive the whole BIE if the starting position is the beginning of BIE and the 

length of the portion is equal to the BIE length. 

 Operations with spaces 

We have only one operation with a single space – clearing (deleting) the space, i.e. replacing all BIE of 

the space with Ø (empty BIE). After this operation, all BIE of the space will have zero length. Really, the 

space is cleared via replacing it with empty space. 
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We may provide two operations with two spaces: (1) copying and (2) moving the first space in the 

second. The modifications concern how the BIE in the recipient space are processed. We may have: 

― Copy/move with clearing the recipient space; 

― Copy/move with merging the spaces. 

The first modifications first clear the recipient space and after that provide a copy or move operation. 

The second modifications may have two types of processing: destructive or constructive. The 

destructive merging may be "conservative" or "alternative". In the conservative approach, the BIE of 

recipient space remains in the result if it is with none zero length. In the other approach – the BIE from 

donor space remains in the result. In the constructive merging the result is any composition of the 

corresponding BIE of the two spaces. 

Of course, the move operation deletes the donor space after the operation. 

Special kind of operations concerns the navigation in a space. We may receive the space address of 

the next or previous, empty or non-empty elements of the space starting from any given co-

ordinates. 

The possibility to count the number of non empty elements of a given space is useful for practical 

realizations. 

 Operations with indexes, meta-indexes and aggregates 

Operations with indexes, meta-indexes, and aggregates in the MDIM are based on the classical logical 

operations – intersection, union, and supplement, but these operations are not so trivial. Because of the 

complexity of the structure of the information spaces, these operations have two different realizations. 

Every information space is built by two sets: the set of co-ordinates and the set of information elements. 

Because of this, the operations with indexes, meta-indexes, and aggregates may be classified in two 

main types: 

― Operations based only on co-ordinates, regardless of the content of the structures; 

― Operations, which take in account the content of the structures. 

The operations based only on the co-ordinates are aimed to support information processing of 

analytically given information structures. For instance, such structure is the table, which may be 

represented by an aggregate. Aggregates may be assumed as an extension of the relations in the 

sense of the model of Codd [Codd, 1970]. The relation may be represented by an aggregate if the 

aggregation mapping is one-one mapping. Therefore, the aggregate is a more universal structure than 

the relation and the operations with aggregates include those of relation theory. What is the new is that 

the mappings of aggregates may be not one-one mappings. 
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In the second case, the existence and the content of non empty structures determine the operations, 

which can be grouped corresponding to the main information structures: elements, spaces, indexes, 

and meta-indexes. For instance, such operation is the projection, which is the analytically given space 

index of non-empty structures. The projection is given when some coordinates (in arbitrary positions) 

are fixed and the other coordinates vary for all possible values of coordinates, where non-empty 

elements exist. Some given values of coordinates may be omitted during processing. 

Other operations are transferring from one structure to another, information search, sorting, making 

reports, generalization, clustering, classification, etc. 

Hashing 

A set abstract data type (set ADT) is an abstract data type that maintains a set S under the following 

three operations: 

1. Insert(x): Add the key x to the set. 

2. Delete(x): Remove the key x from the set. 

3. Search(x): Determine if x is contained in the set, and if so, return a pointer to x. 

One of the most practical and widely used methods of implementing the set ADT is with hash tables 

[Morin, 2005]. 

The simplest implementation of such data structure is an ordinary array, where k-th element 

corresponds to key k. Thus, we can execute all operations in O(1). It is impossible to use this 

implementation, if the total number of keys is large [Kolosovskiy, 2009]. 

The main idea behind all hash table implementations is to store a set of  

n = |S| elements in an array (the hash table) A of length m. In doing this, we require a function that 

maps any element x to an array location. This function is called a hash function h and the value h(x) is 

called the hash value of x. That is, the element x gets stored at the array location A[h(x)].  

The occupancy of a hash table is the ratio  = n/m of stored elements to the length of A [Morin, 2005]. 

We have two cases: (1) m  n and (2) m  n: 

― In the first case (m  n) we may expect so called perfect hashing where every element 

may be stored in separate cell of the array. In other words, if we have a collection of 

n elements whose keys are unique integers in (1, m), where m  n, then we can store the 

items in a direct address table, T[m], where Ti is either empty or contains one of the 

elements of our collection. 
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― In the second case (m  n) we may expect so called “collisions” when two or more 

elements have to be stored in the same cell f the array. 

If we work with two or more keys, which have the same hash value, these keys map to the same cell in 

the array. Such situations are called collisions. There are two basic ways to implement hash tables to 

resolve collisions: 

― Chained hash table; 

― Open-address hash table. 

In chained hash table each cell of the array contains the linked list of elements, which have 

corresponding hash value. To add (delete, search) element in the set we add (delete, search) to 

corresponding linked list. Thus, time of execution depends on length of the linked lists. 

 

In open-address hash table we store all elements in one array and resolve collisions by using other 

cells in this array. To perform insertion we examine some slots in the table, until we find an empty slot 

or understand that the key is contained in the table. To perform search we execute similar routine 

[Kolosovskiy, 2009]. 

The study of hash tables follows two very different lines:  

1) Integer universe assumption;  

2) Random probing assumption. 

Integer universe assumption: All elements stored in the hash table come from the universe 

U = {0,...,u−1}. In this case, the goal is to design a hash function h : U → {0, ..., m−1} so that for each 

I ∈ {0,...,m−1}, the number of elements x ∈ S such that h(x) = i is as small as possible. Ideally, the hash 

function h would be such that each element of S is mapped to a unique value in {0, ..., m−1}. 

Historically, the integer universe assumption seems to have been justified by the fact that any data 

item in a computer is represented as a sequence of bits that can be interpreted as a binary number. 

However, many complicated data items require a large (or variable) number of bits to represent and this 

make the size of the universe very large. In many applications u is much larger than the largest integer 

that can fit into a single word of computer memory. In this case, the computations performed in number-

theoretic hash functions become inefficient. This motivates the second major line of research into hash 

tables, based on Random probing assumption. 
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Random probing assumption: Each element x that is inserted into a hash table is a black box that 

comes with an infinite random probe sequence x0, x1, x2, ... where each of the xi is independently and 

uniformly distributed in {0, ..., m−1}.  

Both the integer universe assumption and the random probing assumption have their place in practice. 

When there is an easily computing mapping of data elements onto machine word sized integers then 

hash tables for integer universes are the method of choice. 

When such a mapping is not so easy to compute (variable length strings are an example) it might be 

better to use the bits of the input items to build a good pseudorandom sequence and use this sequence 

as the probe sequence for some random probing data structure [Morin, 2005]. 

Perfect hash function 

We consider hash tables under the integer universe assumption, in which the key values x come from 

the universe U = {0, ..., u−1}. A hash function h is a function whose domain is U and whose level is the 

set {0, ..., m−1}, m ≤ u. 

A hash function h is said to be a perfect hash function for a set S ⊆ U if, for every x ∈ S, h(x) is 
unique. 

A perfect hash function h for S is minimal if m = |S|, i.e., h is a bisection between S and 

{0, ..., m − 1}. Obviously a minimal perfect hash function for S is desirable since it allows us to store all 

the elements of S in a single array of length n. Unfortunately, perfect hash functions are rare, even for 

m much larger than n [Morin, 2005]. 

The set of elements, S, may be: 

 Static (no updates); 

 Dynamic where fast queries, insertions, and deletions must be made on a large set. 

“Dynamic perfect hashing” is useful for the second type of situations. In this method, the entries that 

hash to the same slot of the table are organized as separate second-level hash table. If there are k 

entries in this set S, the second-level table is allocated with k2 slots, and its hash function is selected at 

random from a universal hash function set so that it is collision-free (i.e. a perfect hash function). 

Therefore, the look-up cost is guaranteed to be O(1) in the worst-case [Dietzfelbinger et al, 1994]. 

Perfect hashing can be used in many applications in which we want to assign a unique identifier to each 

key without storing any information on the key. One of the most obvious applications of perfect hashing 

(or k-perfect hashing) is when we have a small fast memory in which we can store the perfect hash 

function while the keys and associated satellite data are stored in slower but larger memory. The size of 
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a block or a transfer unit may be chosen so that k data items can be retrieved in one read access. In 

this case we can ensure that data associated with a key can be retrieved in a single probe to slower 

memory. This has been used for example in hardware routers.  

Perfect hashing has also been found to be competitive with traditional hashing in internal memory on 

standard computers. Recently perfect hashing has been used to accelerate algorithms on graphs 

when the graph representation does not fit in main memory [Belazzougui et al, 2009]. 

For the purposes of CRP we need possibility to use perfect hashing with dynamic and very large 

(practically – unlimited) set, S, of elements with variable length of strings. In this case, the computing 

mapping of data elements onto machine word sized integers is not so easy to compute (we have long 

strings with variable length). In the same time, we could not use the bits of the input items to build a 

good pseudorandom sequence and use this sequence as the probe sequence for some random 

probing data structure, because of very large, unlimited, set, S, of elements. 

Tries 

“As defined by me, nearly 50 years ago, it is properly pronounced "tree" as in the word 

"retrieval". At least that was my intent when I gave it the name "Trie". The idea behind the 

name was to combine reference to both the structure (a tree structure) and a major purpose 

(data storage and retrieval)”. 

Edward Fredkin, July 31, 2008 

Trie is a tree for storing strings in which there is one node for every common prefix. The strings are 

stored in extra leaf nodes. 

A trie can be thought of as an m-ary tree, where m is the number of characters in the alphabet. A 

search is performed by examining the key one character at a time and using an m-way branch to follow 

the appropriate path in the trie, starting at the root. In other words, in the multi-way trie (Figure 1), each 

node has a potential child for each letter in the alphabet. Below is an example of a multi-way trie 

indexing the three words BE, BED, and BACCALAUREATE [Pfenning, 2012]. 

Tries are distinct from the other data structures because they explicitly assume that the keys are a 

sequence of values over some (finite) alphabet, rather than a single indivisible entity. Thus tries are 

particularly well-suited for handling variable-length keys. Also, when appropriately implemented, tries 

can provide compression of the set represented, because common prefixes of words are combined 

together; words with the same prefix follow the same search path in the trie [Sahni, 2005]. 
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Figure 1. Example of multi-way trie [Pfenning, 2012] 

 

Burst Tries 

The tree data structures compared to hashing have three sources of inefficiency [Heinz et al, 2002]: 

― First, the average search lengths is surprisingly high, typically exceeding ten pointer 

traversals and string comparisons even on moderate-sized data sets with highly skew 

distributions. In contrast, a search under hashing rarely requires more than a string 

traversal to compute a hash value and a single successful comparison; 

― Second, for structures based on Binary Search Trees (BSTs), the string comparisons 

involved redundant character inspections, and were thus unnecessarily expensive. For 

example, given the query string “middle” and given that, during search, “Michael” and 

“midfield” have been encountered, it is clear that all subsequent strings inspected must 

begin with the prefix “mi”; 

― Third, in tries the set of strings in a subtrie tends to have a highly skew distribution: 

typically the vast majority of accesses to a subtrie are to find one particular string. Thus 

use of a highly time-efficient, space-intensive structure for the remaining strings is not a 

good use of resources [Heinz et al, 2002]. 

These considerations led to the burst trie. A burst trie is an in-memory data structure, designed for sets 

of records that each has a unique string that identifies the record and acts as a key. Formally, a string s 
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with length n consists of a series of symbols or characters ci for i=0;...;n, chosen from an alphabet A of 

size |A|. It is assumed that |A| is small, typically no greater than 256 [Heinz et al, 2002]. 

A burst trie consists of three distinct components (Figure 2): a set of records, a set of containers, and 

an access trie. 

 

 

Figure 2. Burst trie with BSTs used in containers [Heinz et al, 2002] 

 

Records. A record contains a string; information as required by the application using the burst trie (that 

is, for information such as statistics or word locations); and pointers as required to maintain the 

container holding the record. Each string is unique; 

Containers. A container is a small set of records, maintained as a simple data structure such as a list 

or a binary search tree (BST). For a container at depth k in a burst trie, all strings have length at least k 

and the first k characters of all strings are identical. It is not necessary to store these first k characters. 

Each container also has a header, for storing the statistics used by heuristics for bursting. Thus a 

particular container at depth 3 containing “author” and “automated” could also contain “autopsy” but not 

“auger”; 

Access trie. An access trie is a trie whose leaves are containers. Each node consists of an array p, of 

length |A|, of pointers, each of which may point to either a trie node or a container, and a single empty-

string pointer to a record. The |A| array locations are indexed by the characters cA. The remaining 

pointer is indexed by the empty string. 

The depth of the root is defined to be 1. Leaves are at varying depths. 
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A burst trie can be viewed as a generalization of other proposed variants of trie. 

Figure 2 shows an example of a burst trie storing ten records whose keys are “came”, “car”, “cat”, 

“cave”, “cy”, “cyan”, “we”, “went”, “were”, and “west” respectively. In this example, the alphabet A is the 

set of letters from A to Z, and in addition an empty string symbol  is shown; the container structure 

used is a BST. In this figure, the access trie has four nodes, the deepest at depth 3. The leftmost 

container has four records, corresponding to the strings “came”, “car”, “cat”, and “cave”. One of the 

strings in the rightmost container is “”, corresponding to the string “we”. The string “cy” is stored 

wholly within the access trie, as shown by the empty-string pointer to a record, indexed by the empty 

string [Heinz et al, 2002]. 

Natural Language Addressing 

Analyzing Figure 1 and Figure 2, one may see a common structure in both figures. It is a trie which 

leafs are containers. In Figure 1 leafs are Social Security Numbers (SS#) and in Figure 2 leafs are 

Binary Search Trees (BST). In addition, Figure 1 looks as it is created from many connected Perfect 

Hash Tables (PHT). 

In addition, if we take in account the possibilities of MDIM, we may use for realization a multi-way burst 

trie which: 

― Nodes are PHT with entries for all numbers of given interval, for instance (0, 232-1 ); 

― Containers may hold subordinated burst tries. 

One very important consequence is to use as interval only the numbers which are codes of letters in 

any encoding system: ASCII, UNICODE16, or UNICODE32. This case is called “Natural Language 

Addressing” (NL-addressing) [Ivanova et al, 2013; Ivanova, 2014a; Ivanova, 2014b]. 

The idea of NL-addressing is to use encoding of the name both as relative address and as route in a 

Multi-dimensional information space and this way to speed the access to stored information. For 

instance, let have the next definition: “Pirrin: A mountain with co-ordinates (x, y)”. In the computer 

memory, it may be stored in a file at relative address “50067328” and the corresponded index couple 

may be: (“Pirrin”, “50067328”). At the memory address “50067328” the main text, “A mountain ... (x,y)” 

will be stored. To read/write the main text, firstly we need to find name “Pirrin” in the index and after that 

to access memory address “50067328” to read/write the definition. If we assume that name “Pirrin” in 

the computer memory is encoded by six numbers (letter codes), for instance by using ASCII encoding 

system Pirrin is encoded as (80, 105, 114, 114, 105, 110), than we may use these codes for direct 

address to memory, i.e. (“Pirrin”, “80, 105, 114, 114, 105, 110”). 
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Above we have written two times the same name as letters and codes. Because of this we may omit 

this couple and index, and read/write directly to the address “80, 105, 114, 114, 105, 110”. For human 

this address will be shown as “Pirrin”, but for the computer it will be “80, 105, 114, 114, 105, 110”. 

Multi-domain access method “ArM32” 

Perfect hash tables and burst tries give very good starting point. The main problem is that they are 

designed as structures in the main memory which has limited size, especially in small desktop and 

laptop computers.  

For practical implementation aimed to store very large perfect hash tables and burst tries in the external 

memory (hard disks) we need relization in accordance to the real possibilities. One possible solution is 

to use “Multi-Domain Information Model” (MDIM) [Markov, 1984] and corresponded to it software tools. 

During the last three decades, MDIM has been discussed in many publications. See for instance 

[Markov et al, 1990; Markov, 2004; Markov et al, 2013]. 

The the corresponded to MDIM access method and its different program realizations during the years 

have different names: Multi-Domain Access Method (MDAM), Archive Manager (ArM), and Natural 

Language Addressing Archive Manager (NL-ArM), Big Data Archive Manager (BigArM) (Table 1).  

 

Developing the method and all projects of its realizations had been done by Krassimir Markov. 

 

The program realizations had been done by: 

― Krassimir Markov (MDAM0, MDAM1, MDAM2, MDAM3); 

― Dimitar Guelev (MDAM4); 

― Todor Todorov (MDAM5 written on Assembler with interfaces to PASCAL and C, MDAM5 

rewritten on C for IBM PC); 

― Vasil Nikolov (MDAM5 interface for LISP, MDAM6); 

― Vassil Vassilev (ArM7 and ArM8); 

― Ilia Mitov and Krassimira Minkova Ivanova (ArM 32); 

― Vitalii Velychko (ArM32 interface to Java); 

― Krassimira Borislavova Ivanova (NL-ArM). 
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Table 1. Realizations of MDAM 

no. name year machine type language and  operating system 

0 MDAM0 1975  MINSK 32 37 bit Assembler Tape OS 

1 MDAM1 1981 IBM 360 32 bit FORTRAN DOS 360 

2 MDAM2 1983  PDP 11 16 bit FORTRAN DOS 11 

3 MDAM3 1985  PDP 11 16 bit Assembler DOS 11 

4 MDAM4 1985 Apple II 8 bit UCSD Pascal Disquette OS 

5 MDAM5 1986  IBM PC 16 bit Assembler, C MS DOS 

6 MDAM6 1988  SUN 32 bit C UNIX 

7 ArM7  1993  IBM PC  16 bit Assembler MS DOS 3 

8 ArM8 1998  IBM PC 16 bit Object Pascal MS Windows 16 bit 

9 ArM32 2003  IBM PC 32 bit Object Pascal  MS Windows 32 bit 

10 NL-ArM 2012 IBM PC 32 bit Object Pascal MS Windows 32 bit 

11 BigArM 2015 ... under developing 64 bit Pascal, C, Java MS Windows, Linux, Cloud

 

For a long period, MDIM has been used as a basis for organization of various information bases.  

One of the first goals of the development of MDIM was representing the digitalized military defense 

situation, which is characterized by a variety of complex objects and events, which occur in the space 

and time and have a long period of variable existence [Markov, 1984]. The great number of layers, 

aspects, and interconnections of the real situation may be represented only by information spaces’ 
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hierarchy. In addition, the different types of users with individual access rights and needs insist on the 

realization of a special tool for organizing such information base. 

Over the years, the efficiency of MDIM is proved in wide areas of information service of enterprise 

managements and accounting. For instance, the using MDIM permits omitting the heavy work of 

creating of OLAP structures [Markov, 2005]. 

ArM32 

Crrent realization of MDIM, respectively – MDAM, is the Archive Manager – “ArM32” developed for MS 

Windows (32 bit) [Markov, 2004; Markov et al, 2008] and its upgrate to NL-ArM. 

The ArM32 elements are organized in numbered information spaces with variable levels. There is no 

limit for the levels of the spaces. Every element may be accessed by a corresponding multidimensional 

space address (coordinates) given via coordinate array of type cardinal. At the first place of this array, 

the space level needs to be given. Therefore, we have two main constructs of the physical 

organizations of ArM32 information bases – numbered information spaces and elements. 

The ArM32 Information space (IS) is realized as a (perfect) hash table stored in the external memory. 

Every IS has 232 entries (elements) numbered from 0 up to 232-1. The number of the entry (element) is 

called its co-ordinate, i.e. the co-ordinate is a 32 bit integer value and it is the number of the entry 

(element) in the IS.  

Every entry is connected to a container with variable length from zero up to 1G bytes. If the container 

holds zero bytes it is called “empty”. In other words, in ArM32, the length of the element (string) in the 

container may vary from 0 up to 1G bytes. There is no limit for the number of containers in an archive 

but their total length plus internal indexes could not exceed 232 bytes in a single file. 

If all containers of an IS hold other IS, it is called “IS of corresponded level” depending of the depth of 

including subordinated IS. If containers of given IS hold arbitrary information but not other IS, it is called 

“Terminal IS”. 

To locate a container, one has to define the path in hierarchy using a co-ordinate array with all 

numbers of containers starting from the one of the root information space up to the terminal information 

space which is owner of the container. 

The hierarchy of information spaces may be not balanced. In other words, it is possible to have 

branches of the hierarchy which have different depth. 

In ArM32, we assume that all possible information spaces exist. 

If all containers of the information space are empty, it is called “empty”. 
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Usually, most of the ArM32 information spaces and containers are empty. “Empty” means that 

corresponded structure (space or container) does not occupy disk space. This is very important for 

practical realizations. 

Remembering that Trie is a tree for storing strings in which there is one node for every common prefix 

and the strings are stored in extra leaf nodes, we may say the ArM32 has analogous organization and 

can be used to store (burst) tries. 

 Functions of ArM32 

ArM32 is realized as set of functions wich may be executed from any user program. Because of the rule 

that all structures of MDIM exist, we need only two main functions with containers (elements): 

 Get the value of a container (as whole or partially); 

 Update a container (with several variations). 

Because of this, the main ArM32 functions with information elements are:  

― ArmRead (reading a part or a whole element);  

― ArmWrite (writing a part or a whole element);  

― ArmAppend (appending a string to an element);  

― ArmInsert (inserting a string into an element);  

― ArmCut (removing a part of an element);  

― ArmReplace (replacing a part of an element);  

― ArmDelete (deleting an element);  

― ArmLength (returns the length of the element in bytes). 

MDIM operations with information spaces are over: 

 Single space – clearing the space, i.e. updating all its containers to be empty; 

 Two spaces – there exist several such type of operations. The most used is copying of 

one space in another, i.e. copying the contents of containers of the first space in the 

containers of the second. Moving and comparing operations are available, too. 

The corresponded ArM32 functions over the spaces are:  

― ArmDelSpace (deleting the space); 

― ArmCopySpace and ArmMoveSpace (copying/moving the firstspace in the second in the 

frame of one file); 

― ArmExportSpace (copying one space from one file to the other space, which is located in 

another file). 
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The ArM32 functions, aimed to serve the navigation in the information spaces return the space address 

of the next or previous, empty or non-empty elements of the space starting from any given co-

ordinates. They are ArmNextPresent, ArmPrevPresent, ArmNextEmpty, and ArmPrevEmpty.  

The ArM32 function, which create indexes, is ArmSpaceIndex – returns the space index of the non-

empty structures in the given information space. 

The service function for counting non-empty ArM32 elements or subspaces is ArmSpaceCount – 

returns the number of the non-empty structures in given information space. 

ArM32 engine supports multithreaded concurrent access to the information base in real time. Very 

important characteristic of ArM32 is possibility not to occupy disk space for empty structures (elements 

or spaces). Really, only non-empty structures need to be saved on external memory. 

 

Summarizing, the advantages of the ArM32 are: 

 Possibility to build growing space hierarchies of information elements; 

 Great power for building interconnections between information elements stored in the 

information base; 

 Practically unlimited number of dimensions (this is the main advantage of the numbered 

information spaces for well-structured tasks, where it is possible "to address, not to 
search").  

 

NL-ArM access method 

MDAM and respectively ArM32 are not ready to support NL-addressing. We have to upgrade them for 

ensuring the features of NL-addressing. The new access method is called NL-ArM (Natural Language 

Addressing Archive Manager). 

The program realization of NL-ArM is based on a specialized hash function and two main functions for 

supporting the NL-addressing access. 

In addition, several operations were realized to serve the work with thesauruses and ontologies as well 

as work with graphs. 
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 NL-ArM hash function 

The NL-ArM hash function is called “NLArmStr2Addr”. It converts a string to space path. Its algorithm is 

simple: four ASCII symbols or two UNICODE 16 symbols form one 32 bit co-ordinate word. This 

reduces the space’ level four, respectively – two, times. The string is extended with leading zeroes if it 

is needed. UNICODE 32 does not need converting – one such symbol is one co-ordinate word. 

There exists a reverse function, “NLArmAddr2Str”. It converts space address in ASCII or UNICODE 

string. The leading zeroes are not included in the string. 

The functions for converting are not needed for the end-user because they are used by the NL-ArM 

upper level operations given below.  

All NL-ArM operations access the information by NL-addresses (given by a NL-words or phrases). 

Because of this we will not point specially this feature. 

 

 NL-ArM operations with terminal containers 

Terminal containers are those which belong to terminal information spaces. They hold strings up to 

1GB long. 

There are two main operations with strings of terminal containers: 

― NLArmRead – read from a container (all string or substring); 

― NLArmWrite – update the container (all string or substring). 

Additional operations are: 

― NLArmAppend (appending a substring to string of the container); 

― NLArmInsert (inserting a substring into string of the container); 

― NLArmCut (removing a substring from the string of the container); 

― NLArmReplace (replacing a substring from the string of the container); 

― NLArmDelete (empting the container); 

― NLArmLength (returns the length of the string in the container in bytes). 

In general, the container may be assumed not only as up to 1GB long string of characters but as some 

other information again up to 1GB. As a rule, the access methods do not interpret the information which 

is transferred to and from the main memory. It is important to have possibility to access information in 

the container as a whole or as set of concatenated parts. 
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Assuming that all containers exist but some of them are empty, we need only two main operations: 

1) To update (write) the string or some of its parts. 

2) To receive (read) the string or some of its parts. 

The additional operations are modifications of the classical operations with strings applied to this case. 

To access information from given container, NL-ArM needs the path to this container and buffer from or 

to which the whole or a part of its content will be transferred. Additional parameters are length in bytes 

and possibly - the starting position of substring into the string. When string has to be transferred as a 

whole, the parameters are the length of the string and zero as number of the starting position. 

 

 NL-ArM operations with information spaces (hash tables) 

With information spaces we may provide service operations with hash tables such as counting empty or 

non-empty containers, copying or moving strings of substrings from containers one to those of another 

terminal information space. We will not use these operations in the frame of this work.  

 

Requirements to BigArM realization characteristics  

Main characteristics of program realizations of MDAM are shown in Table 2. 

Using ArM32 engine we have great limit for the number of dimensions as well as for the number of 

elements on given dimension. The boundary of this limit in the current realization of ArM32 engine is 232 

for every dimension as well as for number of dimensions. Of course, another limitation is the maximum 

length of the files, which depends on the possibilities of the operating systems and realization of ArM. 

Main limitation of ArM32 is that the length of archive files may be 4GB long. This cause that in practical 

implementations we have not so big number of dimensions (usually it is about 200). 

What is needed is to extend possibilities of ArM32 from 32 bit up to 64 bit addressing capabilities and to 

rationalize the internal hash structures to speed access from milliseconds down to microseconds per 

one access operation. This will be done in ongoing developing of its new version called “BigArM” for 64 

bit machines and operating systems like MS Windows and Linux. In addition, BigArM will permit new 

kind of Cloud processing of Big Data, called “Collect/Report Paradigm” (CRP) [Markov et al, 2014; 

Markov & Ivanova, 2015]. 
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Table 2. Main characteristics of program realizations of MDAM 

№ name 
max 

dimensions

max size of 

element 

max number of

elements 

max size of 

archive 

max size of 

information 

base 

access time 

0 MDAM0 1 128 bytes 128 512  words 16K  words minutes 

1 MDAM1 1 256 bytes 256 1 KB 10 MB seconds 

2 MDAM2 2 256 bytes 231 (10 000) 32 KB 4 MB seconds 

3 MDAM3 2 256 bytes 231 (10 000) 32 KB 4 MB seconds 

4 MDAM4 1 80 bytes 25 30 elements 4KB deciseconds 

5 MDAM5 2 64 KB 231 (1 000 000) 32KB 80 MB centiseconds 

6 MDAM6 2 64 KB 231 (1 000 000) 32KB 90 MB centiseconds 

7 ArM7 2+2 1 GB 260 4 GB 10 GB milliseconds 

8 ArM8 2+2 1 GB 260 4 GB 10 GB milliseconds 

9 ArM32 200 1 GB 264 (max 4G) 4 GB 1TB milliseconds 

10 NL-ArM 200 1 GB 264 (max 4G) 4 GB 1TB milliseconds 

11 BigArM 232 4 GB 264 1 PB 1 YB microseconds 

 

Conclusion 

In this survey we presented mathematical and informational foundations as well as requirements to 

realization characteristics BigArM - an access method for storing and accessing Big Data. It is under 

development. Firstly, we outlined the needed basic mathematical concepts, the Names Sets, and 

hierarchies of named sets aimed to create a specialized model for organization of information bases 
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called “Multi-Domain Information Model” (MDIM). The “Information Spaces” defined in the model are 

kind of strong hierarchies of enumerations (named sets). Further we remembered the main features of 

hashing and types of hash tables as well as the idea of “Dynamic perfect hashing” and “Trie”, especially 

– the “Burst trie”. Hash tables and tries give very good starting point. The main problem is that they are 

designed as structures in the main memory which has limited size, especially in small desktop and 

laptop computers. To solve this problem, dynamic perfect hashing and burst tries will be realized as 

external memory structures in BigArM. 

Special attention we have paid to MDIM and its realizations ArM2 and NL-ArM. The program realization 

of NL-ArM is based on specialized hash functions and two main functions for supporting the 

NL-addressing access. In addition, several operations were realized to serve the work with thesauruses 

and ontologies as well as work with graphs. 

Finaly, we have presented the main requirements to BigArM realization characteristics. The expected 

project characteristics of BigArM are sumarized in Table 3. 

 

Table 3. Project characteristics of BigArM 

Programming language  Object Pascal, C, Java  

Operational environment Windows, Linux, Cloud  

Maximal size of the elements in the archive 4 GB  

Maximal size of the archive 264  (>1 PB = 250)  

Maximal sizeof the information base no limit (>1 YB = 280)  

Access time microseconds  

Dimensions of the information spaces variable up to max 232  

Number of elements in an archive  264  

Main technologies for accessing data ― Direct R/W addressing 

― NL R/W addressing 

― Collect/Report paradigm 
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