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Abstract: This paper introduces a discussion about evolutionary search methods based on Hamming 

oracle. In many optimization problems, the design of the fitness function includes the Hamming 

distance being referred this kind of functions as Hamming oracle. In this paper we adopt a critical look 

and ask ourselves to what extent genetic algorithms and other related evolutionary methods truly mimic 

evolution. We tested three evolutionary search methods taken as a case study the evolutionary 

synthesis of quantum-dot cellular automata circuits. Our main conclusion is that evolutionary search 

methods do not mimetic Darwinian evolution because knowledge is not obtained from the evolutionary 

surface exploration: evolution is the result of the ‘knowledge’ embedded by the researcher or human 

expert into the fitness function. Maybe a more appropriate denomination would be “combinatorial 

search algorithms" such as Minimax, Alpha-beta pruning, etc. 
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Introduction 

One of the key tasks in genetic and evolutionary algorithms is the evaluation of the quality, goodness or 

merit of a given solution, represented by an array, which is referred to chromosome. Generally, this 

evaluation is performed by an objective function or fitness that maps each chromosome or solution onto 

a real number, representing a measure of the optimality of a chromosome. In many optimization 

problems, the design of the fitness function includes the Hamming distance being referred this kind of 

functions as Hamming oracle (Figure 1). According to [Dembsky et al., 2007] an array or string, i.e. the 

chromosome, is then presented (input) to the Hamming oracle which assigns the string a rank, based 

on its proximity to a desired target (the output dependent on Hamming distance). In such cases, the 

desired target or optimal chromosome, could be defined by setting directly the optimal solution, e.g. in a 

theoretical study of the convergence of an evolutionary algorithm. In other cases, the desired target is 
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defined by setting the quantitative and qualitative features for a given optimal solution, e.g. in industrial 

design optimization we could define the most appropriate strength, weight, cost, and durability of a 

product. However, today one of the biggest criticisms received by genetic algorithms and related 

evolutionary search techniques is that in many practical applications the fitness function contains a lot 

of information about the optimal solution, such ‘knowledge’ being provided by a human expert. 

 

In this paper we adopt a critical look and ask ourselves to what extent genetic algorithms (GAs) and 

other related evolutionary methods truly mimic the evolution in the search for an optimal or near-optimal 

solution. We tested three evolutionary search methods taken as a case study the evolutionary synthesis 

of quantum-dot cellular automata circuits. Our assumption is that the researcher or human expert feeds 

the Hamming oracle with an excess of knowledge, so the fitness landscape reduces its area 

significantly. 

 

During the last decade there has been an attempt to apply GAs to the efficient and optimal design of 

QCA circuits. In all the following examples, the fitness is the result of comparing the output of the 

evaluated circuit with a predefined truth table or desired target: evolution is guided by a Hamming 

oracle. For instance, [Kamrani et al. 2012] applied GAs to design QCA circuits optimizing the number of 

gates and clock cycles by utilization of NAND and inverter gates. In this approach a tree structure is 

used to represent a chromosome, i.e. a candidate QCA circuit. The fitness function evaluates as 

positive effects a size reduction of the tree, and therefore a small number of QCA cells. Consequently, 

the negative effects are a result of any enlargement of the tree, and thus a greater number of QCA 

cells. A similar approach is used by [Bonyadi et al., 2007] and [Houshmand et al., 2009, 2011] 

representing a chromosome as a tree structure. However, the tree is constructed with majority and 

inverter gates and the leaves can be either logical value 1 or Boolean variables. Once again, the fitness 

function minimize the number of gates through promoting the rule that ‘fewer nodes is a better solution’. 

Applying a more sophisticated methodology [Vilela Neto et al., 2007] introduced a coevolutionary model 

of GA optimizing the desired logic by the evolution of circuit topology, type cell and clock zone. The 

fitness is calculated by comparing the output of the candidate circuit with a truth table. However, the 

‘oracle needs some extra help’ including the fitness function some terms –depending on the specific 

problem - to prevent local trapping problems. 
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Figure 1.-  Hamming oracle (for explanation see text) 

 

 

Simulation experiments  

Quantum-dot cellular automata (QCA) are a nanoscale technology based on Coulombic forces instead 

of current (e.g. CMOS) technology. A QCA cell (Figure 2) is the basic element being composed of four 

dots and two electrons. Electrons due to tunnel and the Coulomb repulsion effects occupy the dots, 

leading to two stable arrangements or polarizations which are encoded as 0 or 1. Thus, electrons 

arrange diagonally in order to be at a maximum distance from each other (Figure 2). QCA circuits are 

combinational logic circuits constructed from the binding of QCA cells, being the fundamental QCA logic 

devices: QCA wire, QCA majority gate and QCA inverter. Once a QCA circuit is designed the logical 

functionality of the circuit is tested through simulation. At present one of the most used tools to create 

and conduct the simulation of a novel QCA circuit is QCADesigner [Walus et al, 2004] 

[Walus Group, 2009].  
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Figure 2.- QCA cell showing (left) polarization P=+1 (‘bit state 1’) 

and (right) polarization P=-1 (‘bit state 0’) 

 

Simulations experiments were conducting studying the synthesis of four QCA circuits (Figure 3): XOR 

gate, inverted XOR gate, AND gate, 5-input majority gate [Angizi et al., 2015]. After choosing these 

simple circuits, the circuits were designed with QCADesigner verifying their logical functionality with a 

bistable simulation engine [Walus et al., 2004], i.e. assuming that each cell is a simple two-state 

system. The two-state model assumes the following Hamiltonian: 
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where ,
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i jE  is the kink energy between cell i and j, Pj is the cell polarization and  is the tunneling 

energy. Using the Schrodinger equation the simulation engine obtains the state of each cell with 
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where Pi is the polarization state of cell i and Pj the polarization state of the cells in the neighborhood. 
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Figure 3.-  QCA circuits designed and tested with QCADesigner: (a) XOR gate (b) inverted XOR. 

 

Since QCA circuits are clocked, different clock zones were assigned to QCA cells, pumping the 

information through the circuit according to QCADesigner signal clocking. QCA cells perform 

computations using a four-phase clock representing such cells in different color according to its clock 

zone. Following, each circuit was transformed into an array of 13 rows and 19 columns (Figure 4), 

assigning to each cell a value: 0 (empty cell or layout without QCA cell), 1 (QCA cell with clock zone 0), 

2 (QCA cell with clock zone 1), 3 (QCA cell with clock zone 2) or 4 (QCA cell with clock zone 3). 

According to Figure 4 each of arrays would be representing the desired or target QCA circuit. 

 

Figure 4.-  QCA circuits represented by an array (for explanation see text) 

 



International Journal "Information Technologies & Knowledge" Volume 10, Number 3, 2016 

 

 

208

Concluded the circuit design step, we studied the evolutionary synthesis of QCA circuits by different 

evolutionary algorithms which details are described below. 

Evolutionary search was studied testing three evolutionary search and optimization methods:  

 Random search (RS).- RS is an optimization algorithm that does not use the gradient of the 
problem. Thus, the algorithm allows all QCA cells to mutate in any generation, but with the 
possibility that correct letters can be mutated again. The algorithm consists of the following 
steps: (1) obtains a random initial string of same length as desired or target circuit, (2) apply the 
evolutionary feedback loop: (2.1) obtains the mutated offspring, (2.2) selects the best circuit 
and pass it to the next generation and (2.3) stop the loop when a target circuit is reached. 

 Partitioned search (PS).- PS is the name given by [Dembsky et al., 2007] to denote the 
Dawkins' weasel program: an experiment with computer described in the book by Richard 
Dawkins entitled The Blind Watchmaker [Dawkins, 1986]. Based on ‘infinite monkey theorem’ 
the PS algorithm simulates the Darwin’s cumulative selection principle: Darwin's theory of 
evolution by natural selection in organisms with asexual reproduction (individuals reproduce by 
dividing –bipartition- in two ‘children’). In this case, QCA cells mutate in any generation, but 
correct positions are locked (i.e. preserved) as soon as they appear being impossible that 
correct letters can be mutated again. The algorithm consists of the following steps: (1) obtains 
a random initial string of same length as desired or target circuit, (2) apply the evolutionary 
feedback loop: (2.1) obtains the mutated offspring, (2.2) selects the best circuit and pass it to 
the next generation and (2.3) lock correct string positions preventing further mutation (2.4) stop 
the loop when a target circuit is reached. 

 Darwinian selection pressure (DSP).- DSP is the name we have chosen to refer to a genetic 
algorithm without recombination or mutation [Alajmi and Wright, 2014]. Therefore, we study the 
time or number of generations required for the population to be composed of the best solutions 
(or circuits) found in the initial generation. 

In this paper, the fitness of strings, i.e. QCA circuits, is calculated in RS and PS algorithms as follows: 

 

min
s,target( )

L d
f s

L


  (3)

 

Regarding the above expression s is a label that identifies a given circuit, L the length of string 

depicting the circuit and min
s,targetd the distance of the circuit closest to the target circuit. Note that for

min
s,target 0d  , i.e. when the target circuit is reached, the fitness f(s) takes the maximum value being equal 

to 1.  
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In the case of DSP algorithm the fitness is given by the following expression: 

( )f s L H   (4)

 

where H is the Hamming distance between the circuit s and the target circuit. Note that when the target 

circuit is reached then H is zero, and therefore the circuit is ranked with a maximum fitness value (in our 

simulation experiments, 247). Just as it was done in the expression (3) we could also have 

standardized (4) measure (maximum fitness value equal to 1) dividing by L: 

 

( )
L H

f s
L
  (5)

 

Applying probability theory [Dembsky et al., 2007] obtained the expressions to estimate the median 

number of queries required for success - the optimum circuit or target has been found - in RS and PS 

search algorithms (Table 1). In this study we defined such values like Q1 and Q2 for RS and PS 

algorithms, respectively. Details and mathematical model of these two algorithms are described in 

[Dembsky et al., 2007]. We also include ‘takeover time’ (Q3, Table 1): a DSP performance measure 

introduced by [Bäck, 1996]. Q3 is defined as the number of generations or queries for the offspring (or 

population) to be filled with the best solutions (or circuits) found in the initial generation but in the 

absence of crossover and mutation. 

 

Table 1.- Performance evaluation of evolutionary search algorithms 

Evolutionary search algorithm Performance measure 
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Simulation experiments were conducted using the following programs in Python 3.4.4 language: RS 

and PS algorithms, running weasel_3.py and weasel_locked_3.py programs respectively [Pedersen, 

2009]; DSP algorithm, modifying the code of a simple genetic algorithm, i.e. SGA.py [Lahoz-Beltra, 

2016]. All simulation experiments were performed using the following initial conditions and parameter 

values: L=247 (19x13, see Figure 4), the alphabet of possible symbols A={0, 1, 2, 3, 4} with card(A)=4, 

offspring size per generation (population size) N=50 and mutation rate equal to 0.08. In the particular 

case of DSP algorithm, n=2 represents the number of individuals in the tournament step of the 

algorithm. The simulation experiment, i.e. the evolutionary synthesis of QCA circuits, ends when an 

optimum or target circuit is achieved or maximum CPU time is reached.  

Results 

The results obtained in the experiments support the hypothesis that evolutionary search methods based 

on a Hamming oracle could not be mimicking to Darwinian evolution. A plausible explanation is 

because knowledge it is not obtained from the exploration of the evolutionary or fitness surface: 

evolution is the result of the ‘knowledge’ embedded by the researcher or human expert into the fitness 

function, i.e. the oracle (Figure 1). This conclusion is supported by the following simulation results. 

First, experiments with RS and PS have yielded to the following observations. Figure 5 shows the 

evolution of the circuits under the RS algorithm. A striking result is that in the evolutionary synthesis of 

XOR and inverted XOR gates seems to be some evolutionary convergence (Figure 5 a,b) whereas 

such a convergence is not observed for AND as well as 5-input majority gates (Figure 5 c,d). One 

possible explanation could be the number of cells in the array in state 0. However, when evolution takes 

place by means of the PS algorithm then the evolutionary synthesis of the four QCA circuits is 

successfully achieved, and four QCA circuits follow the same evolutionary pattern (Figure 6). Indeed, as 

predicted by the theory of probability Q1=3.0649 10172, thus under RS algorithm (Figure 5) the target 

circuit is never reached. Moreover, the time required far exceeds the age of the universe, i.e. 13.7 109 

according to the NASA’s WMAP project and for this reason the value of fitness is always below the 

maximum value (i.e. 1). In contrast, and according to Q2=26.3386 value under PS algorithm (Figure 6) 

evolutionary synthesis of the four QCA circuits is successful reaching in approximately 26 generations 

the target circuit, and hence the maximum fitness (i.e. 1). These results are confirmed if we take as an 

example the XOR gate simulation experiment. Table 2 shows in RS and PS search algorithms the 

statistical summary for the maximum fitness per generation. In case we take as a measure of 

centralization the median, similarly to as was done for Q1 and Q2, there are significant differences 

between the medians of RS (Me=0.48) and PS (Me=0.79) as is shown in the box and whisker plot 

(Figure 7). 
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Figure 5.- Performance graph of the evolutionary synthesis of QCA circuits under RS algorithm: (a) 

XOR gate, (b) inverted XOR, (c) AND gate, (d) 5-input majority gate 
 
 

 
Figure 6.- Performance graph of the evolutionary synthesis of QCA circuits under PS algorithm: (a) 

XOR gate, (b) inverted XOR, (c) AND gate, (d) 5-input majority gate 
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Table 2.- Statistical summary* 

 RS PS 

Sample size 200 98 

Mean 0.493421 0.736305 

Variance 0.000205907 0.0516711 

Standard deviation 0.0143495 0.227313 

Minimum 0.461538 0.222672 

Maximum 0.534413 1.0 

Rank 0.0728745 0.777328 

 

*Note that in the case of RS, sample size is 200 because we get together in the same sample the 

fitness values of the last 100 iterations of two independent simulation experiments. 

 

 

Figure 7.- Box and whisker plot of the evolutionary synthesis experiments conducted with XOR gate 

under RS and PS algorithms (Mann-Whitney with W = 15981.5 and P-value = 0.0; the notch represents 

a confidence interval for the median and the cross is the arithmetic mean) 
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Secondly, as can be seen (Figure 8) the results obtained in the study conducted with DSP algorithm, 

thus a genetic algorithm without crossover and mutation, show DSP search method does not find the 

optimum circuit. According to the theoretical model Q3=9.1661, thus the number of generations required 

for the population to be composed of the best solutions is approximately equal to 9. The results show a 

local trapping phenomenon, without the population reaches the maximum fitness (i.e. 274). 

Interestingly, evolutionary convergence resembles the poor performance observed during the 

evolutionary synthesis of XOR and inverted XOR gates under random search (RS) algorithm (Figure 5). 

Conclusion 

In conclusion, evolutionary search methods based on Hamming oracle do not mimetic evolution by 

Darwinian natural selection because knowledge is not obtained from the exploration of the evolutionary 

surface: evolution is the result of the ‘knowledge’ embedded by the researcher or human expert into the 

fitness function. Since this knowledge reduces the size of the search space genetic algorithms and 

other related evolutionary methods based on Hamming oracle should be termed as "combinatorial 

search algorithms" together with techniques such as Minimax, Alpha-beta pruning, etc. 

 

 

 

Figure 8.- Performance graph of the evolutionary synthesis of QCA circuits under DSP algorithm: (a) 
XOR gate, (b) inverted XOR, (c) AND gate,  (d) 5-input majority gate 
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