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SEARCH, PROCESSING, AND APPLICATION OF  

LOGICAL REGULARITIES OF CLASSES 

Yury Zhuravlev, Vladimir Ryazanov 

 

Abstract: A model of the type of estimates calculation, based on the systems of logical regularities of 

classes (LRC), to solve supervised classification problems is considered.  The basic definitions are 

given. Two approaches for processing sets of LRC (based on the construction of the shortest logical 

class descriptions and clustering sets of LRC) are described. Different ways to use LRC are 

considered: based on LRC sets classification, construction of various logical descriptions of classes, the 

calculation of informative features, logical correlations of features, minimization of the feature space, 

assessment of outliers. 
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1. Introduction 

The standard task of supervised classification by precedents was considered with n  features, l  

disjoint classes lKKK ,...,, 21  and m  reference objects 1 2{ , , ..., }mX  x x x  (training 

sample) [Zhuravlev, 1978]. The notation , 1, 2,..., ,i iK X K i l    and assumption iK
~

, li ,...,2,1  were used.  Arbitrary object 
1

l

i
i
K


x  is identified by its description in the form 

of feature vector 1 2( , , ..., )nx x xx . For simplicity, we assume that Rxi  (binary-valued 

and k - valued features are considered as a special case of real-valued). When the training sample 

analysis, we will often (especially without specifying) write simply iK  implying that we consider always 

in training iK . 
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2. Logical Regularities of Classes and Basic Definitions. 

Consider the following set of elementary predicates that depend parametrically on unknown 
1 2

1 2, {1,2,..., }, , nn R   c c  [Zhuravlev et al, 2006; Ryazanov, 2007]. We will use the notation 

1, ,
( )

0, otherwise. 
x a

x a


  


 

 

Definition 1. Predicate 

1 2
1 2

1 2

, , , 1 2( ) ( ) ( )& &j j j j
j j

P c x x c 

 
  c c x  (1)

is called the logical regularity of class (LRC) K , l,...,2,1 , if  

1. 
1 2

1 2, , ,: ( ) 1,t tK P
   c cx x   

2. 
1 2

1 2, , ,: ( ) 0,t tK P
   c cx x    

3. 
1 2 * *1 * *2

1 2 1 2

* *1 * *2, , ,1 2

, , , , , ,

{ ( )}
( ) ( ( ))

P

P extr Ф P
 

   
c c

c c c c

x
x x , where Ф - predicate quality criterion.   

 

The predicate (1), satisfying only the first two constraints, is called admissible predicate of this class. 

The predicate (1), satisfying only the first and third restrictions, is called partial logical regularity of class 

K.  

The set 
1 2

1 2, , , 1 2
1 2( ) { : , ; , }n

j j j jN P R c x j x c j       c c x  will be called the 

interval of predicate (analogue to intervals of elementary conjunctions in the algebra of logic).  

Example of interval of LRC with t Kx   is presented in Figure 1. Here black marks marked objects 

satisfying this LRC. 
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Figure 1. Example of LRC with t Kx   

 

Two predicates 
1 2

1 2, , , ( )P c c x , 
3 4

3 4, , , ( )P c c x  are called equivalent if 
1 2

1 2, , , ( )tP c c x =

3 4
3 4, , , ( ), 1, 2,...,tP t m  c c x .  

 Two intervals 
1 2

1 2, , ,( )N P c c , 
3 4

3 4, , ,( )N P c c  are called equivalent if 
1 2

1 2, , ,( )N P X  c c
=

3 4
3 4, , ,( )N P X  c c

. 

Definition 2. The following criterion 

1 2 1 2
1 2 1 2, , , , , ,( ( )) { : , ( ) 1}i i iF P K P

     c c c cx x x x
 

will be called as the standard quality criterion of the predicate of class K .   

Definition 3. A logical regularity of class (LRC) 
1 2

1 2, , , ( )P c c x  is called minimal if there is no such 

equivalent LRC 
3 4

3 4, , , ( )P c c x  that  
3 4 1 2

3 4 1 2, , , , , ,( ) ( )N P N P   c c c c .  

 

 

 



International Journal "Information Technologies & Knowledge" Volume 10, Number 3, 2016 

 

 

219

3. Finding of Logical Regularities with Standard Quality Criteria. 

Consider the general problem of finding LRC with standard quality criteria. The problem will be solved 

under the restriction t Kx   where this object will be called the support object. First of all, we note 

the following. If 
1 2

1 2, , , ( )P c c x is LRC than 
1 2, ( )Pc c x  is also LRC. For simplicity, we omit the 

indices 1 2 {1, 2,..., }n    . There is enough to supplement the parameters 
1 2

,с c  on 

features, not included in 1 2,  , by always running conditions 
1

1min ,
i

ij j j
K
x c x j


  

x
 or 

2
2max ,

i
j j ij

K
x c x j


  

x
. LRC 

1 2
1 2, , , ( )P c c x  and  

1 2, ( )Pc c x  are equivalent. We shall 

seek "minimum" LRC (stretched on some subsets of K ).  

Let 
1 1 1 1

1 2{ , ,..., }
ii i i iuD d d d  and 

2 2 2 2
1 2{ , ,..., }

ii i i ivD d d d  are all monotonically 

decreasing / increasing the choices of values of left and right borders of predicates (1) for the training 

set (possible values of features of objects of K


), respectively.   

We assume further for simplicity that the first order of the training sample objects (and only they) belong 

to the class in question 1 2{ , ,... }hK  x x x
.  

We construct the numerical matrix M
Nmnn

nn










212

2
1
2

2
1

1
1

212
2

1
2

2
1

1
1

...

...
CCCCCC
BBBBBB

, 

1
( )

n

i i
i

N u v


  ,  

iuh
q
iji b  )( 11B , ,,...,2,1 hq  ni ,...,2,1 , iuj ,...,2,1 ,  

ivh
q

iji b  )( 22B , ,,...,2,1 hq  ni ,...,2,1 , ivj ,...,2,1 ,  

iuhm
q
iji c  )(
11 )(C , ,,...,2,1 hmq   ni ,...,2,1 , iuj ,...,2,1 , 

ivhm
q
iji c  )(
22 )(C , ,,...,2,1 hmq   ni ,...,2,1 , ivj ,...,2,1 , где 



International Journal "Information Technologies & Knowledge" Volume 10, Number 3, 2016 

 

 

220

1
1 1, ,

0, otherwise,
q qi ij
ij

x d
b

 
 


     

2
2 1, ,

0, otherwise,
q qi ij
ij

x d
b

 
 


   

  

1
1 ( )1, ,

0, otherwise,
q h q i ij
ij

x d
c  

 


    

2
2 ( )1, ,

0, otherwise.
q h q i ij
ij

x d
c  

 


    

Consider a set of vectors {  21 , ijij xx },  21 , ijij xx = 

 22
2

2
1

11
2

1
1

2
2

2
22

2
21

1
2

1
22

1
21

2
1

2
12

2
11

1
1

1
12

1
11 ,...,,,,...,,,...,,...,,,,...,,,,...,,,,...,,

2211 nn nvnnnunnvuvu xxxxxxxxxxxxxxxxxx

with restrictions 

1 2 1 2

1 1
, {0,1}, 1, 1,

i iu v

ij ij ij ij
j j

x x x x
 

      i=1,2,…,n. (2)

 

We associate the choice of units in  21 , ijij xx  to the parameter values 

niDcDc iiii ,...,2,1,, 2211  . The set of all predicates of possible boundaries 

21, ii DD  is in a one-to-one correspondence with the set of binary vectors of data, so we will use also 

the notation ),( 21  ijij xxF  as an entry for the standard optimality criterion.  We form the 

following systems of inequalities and equalities. 

1 2 1 1 2 2

1 1 1

( , ) ( ) 1, 1, 2,...,
i iu vn

c q q
q ij ij ij ij ij ij

i j j

f x x c x c x q m h
  

          , (3)

1 2 1 1 2 2

1 1 1
( , ) ( ( 1) ( 1) ) 0, 1,2,..., .

i iu vn
b q q
q ij ij ij ij ij ij

i j j

f x x b x b x q h
  

           (4)

 

LRC search problem can be formulated as the following discrete optimization problem: 
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Task Z:  

),( 21  ijij xxF =< number of executed equations in (4)> → max,  

with restrictions  (2-3).  

We associate to the task Z similar problem ZC with respect to real variables.  

 

Task ZC:    

< number of executed equations in (4)> → max,  

with restrictions  (3), (5-6) 

01 ijx , 1, 2,...,i n , 1, 2,..., ij u , (5)

02 ijx , i 1, 2,...,i n , 1, 2,..., ij v . (6)

 

Let 
1 1 2 2

1 1 1

{ : ( ( 1) ( 1) ) 0, 1,2,..., }
i iu vn

q q
ij ij ij ij

i j j

Q q b x b x q h
  

        

where  21, 
ijij xx  is some solution of the problem ZC.  

Let of feature number 1, 2,...,i n   is fixed and },1:min{ 1 Qqbjp q
ij  , 

},1:min{ 2 Qqbjr q
ij  . Let ,,0,1 11 pjxx ijip  

    

.,0,1 22 rjxx ijir  
 Vector   2*1, ijij xx  is defined after performing similar 

operations for 1, 2,...,i n .   

Theorem. Vector   2*1, ijij xx  is the solution of the problem Z.  

This theorem provides a basis for creating an algorithm of search of LRC (1) with standard quality 

criteria: 

1. Calculation of the support object.  
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2. Calculation of sets 
21, ii DD .  

3. Problem ZC solving and finding solutions {Q,   2*1, ijij xx }, {Q} of the problem  Z.  

4. Search of all minimal LRC is carried out by repetition these calculations for all objects of 
class, taken as support objects.  

Currently combinatorial (accurate), relaxation (approximate), and genetic algorithms established 

for finding LRC of given training table [Kovshov et al., 2008]. 

4. Processing Sets of LRC 

 

4.1. Construction of LRC of minimum complexity 

Let found 
1 2, ( )Pc c x . Let us consider the logical regularities search equivalent to the 

1 2, ( )Pc c x , 

but with minimal complexity. For example, the task is to find equivalent for 
1 2, ( )Pc c x  the LRC  

1 2
1 2

1 2

, , , 1 2( ) ( ) ( )& &j j j j
j j

P c x x c 

 
  c c x , for which 1 2    is minimal.  

Consider the next problem of integer linear programming. 

1 2

1

( ) min
n

j j
j

y y


  ,  

1 1 2 2

1 1
(1 ( ))  (1 ( ))  1, ,

n n

j ij j ij j j i
j j

c x y x c y K
 

         x 
 (7)

1 2, {0,1}.j jy y   

The set of all unit components of the solution 1 1 1 2 2 2
1 2 1 2( , ,..., , , ,..., )n ny y y y y y  uniquely determines the 

corresponding subsets of features 1 2,  .  

4.2. Construction of logical description of the classes of minimum complexity 

Let for the class K  the set ( ),tP t Tx   was calculated.   

Definition 4. The logical description of class K   be called logical sum ( ) ( )tt T
D P 

 x x .  
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Definition 5.  The shortest logical description of class K  be called logical sum 

'
( ) ( )s

t
t T T

D P  
 x x , where ' minT   and function ( )sD x  is equal to ( )D x  with given 

training sample.  

Next, we consider that ( ),tP t Tx  is the set of all minimal logical regularities, corresponding LRC 

found.  

Definition 6. The logical sum 
''

( ) ( )m
t

t T T
D P

 
 x x  is called the minimum logical description of the 

class, in which 
''

''
1 2( ) mint t

T
t T T 

    , as a function ( )mD x  the same as ( )D x in the training 

sample.  

Logic (shortest, minimal) class descriptions are analogous representations of partial Boolean functions 

in the form of reduced disjunctive normal form (shortest, minimal), and geometric images of logical 

regularities of classes are analogous to the maximum intervals.  

The task of searching the shortest logical descriptions formulated as a problem for covering: 

min,t
t T

y


   (8)

( ) 1, , {0,1}.t i t i t
t T

P y K y


      x x  (9)

The task of searching minimal of logic descriptions formulated as a problem for covering with the other 

functional and a set T :   

1 2( ) min,t t t
t T

y


      (10)

with constraints (9).   
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Figure 2. The points of a class are covered with a variety of LRC 

 

 

 
Figure 3. Shortest covering class corresponding to Figure 2 

 

 

Note that the source can contain a plurality of equal or similar elements, "degenerate" solutions 

corresponding to the local maximum with small absolute values, the power sets of data can be quite 

large. At the same time, shortest and minimal logical descriptions are not redundant subsets expressing 

both the basic properties of data sets and the properties of the classes themselves. 
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Definition 7. Logical complexity (compactness) of classes are called values: 

1. 1(Kj)=< the number of conjunctions in ( )s
jD x >, 1, 2,...,j l ;  

2. 2(Kj)=< the number of variables in ( )m
jD x >, 1, 2,...,j l .  

The magnitude of ( X )=


l

i
iK

1
)(  is called the logical task complexity, if  is a criterion of logical 

complexity of class.   

 

4.3. Processing LRC sets using a cluster analysis 

The overall idea presented in [Gupal et al., 2015] and consists of the following. When processing the 

sets of vectors we can solve the problem of clustering in the 2, 3, ... clusters. For each cluster is 

calculated its "standard" (for example, the sample mean vector). The resulting system of "standards" is 

taken as a result of the processing of the initial set of precedent vectors. In this case, the clustering 

objects are functions LRC. We obtain the new predicates as a result of the clustering of the set LRC 

and calculations for each cluster, which in general are "partial" LRC.  These predicates are evaluated. 

Thus, we can calculate and estimate  a given number of "sufficiently" different partial logical regularities 

using the initial set of LRC. Figures 4 and 5 are examples. On Figure 4 points of a class (the "black 

circles" class) covered by system of LRC. Figure 5 shows the same example, but shows only two 

intervals. Intervals are substantially different and cover mostly large number of points of this class. 

 

 

Figure 4. Class points are covered with a large number of intervals 
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Figure 5. "Substantial" number of class points are covered by two intervals containing perhaps a small 

number of elements of another class 

 

To implement this idea, we need to create a method of clustering a set of functions (predicates) and to 

calculate the "standard" for a variety of functions forming the cluster of functions. The set of predicates 

of each class should be weighted.  

We put in a one-to-one correspondence of each  1 2,
iP
c c x  from tP  the binary vector iz  as follows: 

 1 2,
1 2( , ,..., ), {0,1}, 1,2,...,i i i i ih ijP z z z z j h   c c x z . Here th K , vector iz  marks the 

original objects of study in the class tK  in which the predicate  1 2,
iP
c c x  is equal to one. The weight 

( )iy z  of each vector iz  (and of the corresponding LRC  1 2,
iP
c c x ) is equal to the share of objects of 

class tK , for which this LRC is equal to 1.  

So, the initial problem is reduced to the clustering of the set of binary vectors 1 2( , ,..., )i i i ihz z zz  with 

known weights ( )iy z  and calculating the standard of each cluster. As a basic method of clustering we 

will take a method based on the minimization of variance [Duda et al, 2000].  

Let the number of clusters l  is fixed. We formulate clustering on  l  clusters by minimizing the variance 

criterion as follows:  
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2

1
( ) min

t i

l

t t i
i K

J y
 

    
z

z m  , (11)

where ( )t ty y z , 
1

, , , , 1, 2,...,
l

i i j
i

K K K i j i j l


        , t i

t i

t t
K

i
t

K

y

y








z

z

z
m .  

It can be shown that partition },...,,{K 21 lKKK  is a local optimal one if  (12) is true for all pairs of 

clusters and for any ẑ  of iK    

2 2
ˆˆ

ˆ ˆ 0
ˆ ˆ( ) ( )

ji

i j

KK
i j

K K

yyyy

y y y y
   

 


 

z m z m  (12)

For simplicity of notation, y  is used herein instead of 
t i

t
K

y


z

,  ŷ  - "weight" of vector ẑ .  

As a result, vectors 1 2( , ,... )i i i ihm m mm  are calculated for each cluster. 

1 2 , 1{0, , ,..., },0 1ij i i iu i im            are true by construction and the values i  are 

calculated from the resulting clustering.  

It offers two approaches to processing sets of LRC. 

1. We solve the problem of clustering of LRC and vectors , 1,2,...,i i lm  are calculated. 

The vectors *, 1,2,...,i i lm  are accepted as a result of processing, which enter a set of the initial  tP  

and are closest to the respective , 1,2,...,i i lm .  

2. The standard of each cluster is a Boolean vector 1 2( , ,..., ), {0,1}i i i ih ijb b b b b , that is a result of 

sampling the vector , 1,2,...,i i lm , where 
1, ,
0, otherwise

ij i
ij

m
b


 


 Here i  is selected from a finite 

set 1 2{0, , ,..., }i i i iuD    . Vector ib  corresponds for each choice of i , choice of the optimal 

vector values is carried out by solving the problem of one-dimensional optimization ( ( )) max
i i

i
D

P


 


 .  

There are various quality criteria   for partial logical regularities which corresponds to a choice of 

some i . An example of a criterion ( ( ))P x  may be, for example, the criterion ( ( )) i iP k n  x  
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[William et al., 1999], where ik  is a number of training objects of class iK , on which the predicate 

( )P x  of this class (corresponding to the chosen i ) is performed. in  is a number of training objects of 

other classes, where the predicate ( )P x  is not satisfied. Practical illustration of the method on the data 

[Mangasarian et al, 1990] is given in [Gupal et al., 2015].  

 

4.4. Informative features, logical correlations and minimization of feature space 

Standard statement of recognition problem suggests that the initial information about the classes 

(training information) is given by sample of vectors of feature descriptions representing all classes. In 

many cases, the system of features is formed "spontaneously". It includes all parameters influencing 

the classification (at least hypothetically) and which can be calculated or measured. Regardless of the 

number of available features, initial system of features is usually the excessive. It may have the 

features that not affect on the classification. In some practical recognition problems, the calculation of 

the cost of the features can be significant and compete with the cost of losses for recognition. Solving 

of training problems with fewer features can also be more precise and the resulting solutions more 

sustainable. Thus, the solution of problems of feature space minimization is important in many ways.  

 

Let us consider the problem of minimizing the of feature space in the following statement. Let there be a 

pattern recognition algorithms, the original feature space NR  of feature values 1 2, ,..., Nx x x  and 

quality criterion )(Af  of the algorithm A. Required to find a subspace of features ,nR n N  with 

features 
1 2
, ,...,

ni i ix x x  with minimal  n ( )n N , for which 0)( fAf  , where 0f  is a some 

minimum acceptable accuracy of the recognition algorithm A , built according to the training data for the 

subspace [Vetrov et al, 2001].  

 

Due to its combinatorial nature, methods of enumeration a large number of different feature subspaces 

are practically unrealizable, so sequential selection procedures of the features systems as subsystems 

of k from the k-1 feature are commonly used.   

The problem of minimizing of feature space was considered for recognition models based on the voting 

on systems of the logical regularities.  
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Let   be a set of all minimal LRC of minimum complexity that was found from the training data, 

N   .  

Definition 8. The value NiNiwei /)()(   is called the measure of informativity of feature №i  if 

( )N i  is the number of elements of the P containing the feature №i .  

 

Let ( , )N i j  is the number of simultaneous occurrences of features into one set of LRC. 

))(),(min(
),(1),(
jNiN

jiN
jiLcorr   is called the logical correlation of features №i  and 

№j . We believe ( , ) 0Lcorr i j   if min( ( )N i , ( )N j )=0,  because of a characteristics ( i  

or/and j ) "does not depend on" (this case arises, for example, if iх const ).  

Consider the problem of finding clusters of features that have close correlation properties. 

As a clustering algorithm for a given semimetric ),( jir  (was used logical correlation) and a fixed 

number of classes has been used clustering procedure "hierarchical grouping" in which the distance 

between the clusters determined by the function 

qp KjKi
qp jirKKr




,
)),(max(),(

.  

 

After finding the n clusters, the condensed subsystem of features includes the most informative initial 

features (no more than one from each cluster). As ( , )p qr K K the function 1 ( , )Lcorr i j  was 

used.  

 

Figure 6 shows the variations of recognition accuracy of recognition models at two approaches to 

minimize the feature space on the example of the state of the ionosphere recognition problem  [Sigillito 

et al., 1989]. Here, the black line represents the consistent screenings of less informative features, the 

gray line corresponds to minimizing the feature space according to the proposed algorithm in this 

paper. It is seen that the gray line is usually lower than the black.  
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Figure 6. The dependence of the error rate of the number of features 

 

4.5. The supervised classification procedures based on LRC 

 Calculation of estimates of the objects as a result of a simple voting on the found sets of LRC can lead 

to unsatisfactory results in recognizing of new objects [Lviv et al, 2015]. A similar effect can often be 

resolved by introducing the negatives LRC (which is equivalent to the use of " anti proximity") and the 

approximation of LRC by sigmoid functions. 

Later, the case of two classes will be considered for simplicity. Suppose that the logical regularities 

 1 , 1,2,..., (1)iP i mx  are found for the first class and  2 , 1,2,..., (2)iP i mx  are found for the 

second class. Then estimation for the first class will be calculated by the formula 

     1 1 1 2
1 0

1,2, , (2)1,2, , (1)
i i i

i mi m

P P 


   x x x


, and  estimation for the second class will be 

calculated by the formula      2 2 2 1
2 0

1,2, , (1)1,2, , (2)
i i i

i mi m

P P 


   x x x


. We will use a simple 

decision rule. Then the object classification will be on a sign of the following function:   

         ,
)(,,,)(,,,)(,,,)(,,,

xxxxx 1

121

2
0

221

222

221

1
0

121

11
i

mimi
iii

mimi
ii PPPPf 






  (13) 
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Here   )(,,,, 1211 miPi x  and   )(,,,, 2212 miPi x  are the logical regularities LRC of the first and 

second classes respectively, 1
0 , 2

0 , 1
i , 2

i   are the weighting coefficients. Object x  belongs to the 

first class if   0xf  and belongs to the second class if   0xf .  When   0xf  occurs a failure on 

the recognition or random classification. 

 

Construction of the function  xf  can be regarded as successive solution of two tasks: 

1. Calculation of LRC   )(,,,, 1211 miPi x  and   )(,,,, 2212 miPi x  , and the transition to the new 

221  )()( mm - dimensional feature space of their values and the corresponding disjunction  negation 

(with the sign "+" for the first class and "-" for the second). 

 

2. Search of weighting coefficients by calculating a new feature space and separating hyperplane using 

the linear methods, for example, "Support Vector Machines", "Linear machine" or "Fisher's linear 

discriminant." We note that in the new feature space objects of the first class of training sample will 

correspond to the vectors of the form   000001
1

1
121  



)(

)( ,,,,,,,,,,
m

t
ttm  y . Objects of the 

second class are  
(2)

1 2 (2)
1

0,0, , 0, , , , , 1 , 0, 0
m

m t t
t

    


      z   . So, classes are linearly 

separable in a given space. Should be noted that in the new feature space is possible to use other 

models.   

 

4.6. Evaluation of outliers based LRC 

Suppose that the shortest logical description 
'

( ) ( )s
t

t T T
D P  

 x x  was calculated 

'
( ) ( )s

t
t T T

D P  
 x x  for given training sample. Let 

'
( ) ( )i t t i

t T T

f y P
 

 x x , where ty  is the 

weight of the corresponding logical regularity (eg, the number of objects that satisfy the given LRC). 

The values ( )if x  are ordered by an increase and normalize (for example, so that ( ) 1
i j

i
K

f



x

x ). 

Minimum values of ( )if x  will be in accordance with the most unusual objects.  
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5. Conclusion 

In the beginning we only have the training set. As a result of discrete analysis, we find sets of logical 

regularities (LRC) for each class. In fact, we find the conjunctions of intervals of attributes changes that 

characterize any class and does not hold for other classes of training objects. Found LRC are of 

independent interest for the practical user. What is the class? Previously, every class we were 

identifying with a set of its representatives. Now we can say that each class is characterized by a 

variety of some LRC (a variety of knowledge). It should be noted that we do not use any metric 

properties of objects. Features may be ordinal. Knowledge of informative features is not required. On 

the contrary, they can be estimated using the found sets of LRC. The article contains numerous 

possible applications of found sets for pattern recognition tasks.  Further research in this area require 

the presence of cases of missing data, the linear relationships between variables, construction of 

optimal recognition procedures based on the found sets of  LRC.   
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