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Abstract: This paper addresses the transformation of an interactive evolutionary algorithm - the 

biomorphs model introduced by Dawkins in his book “The Blind Watchmaker” - in a genetic algorithm. 

One of the critical steps was the substitution of the evaluation made by a human by a fitness function. 

In addition we studied two experimental situations: (i) biomorphs populations with only mutation and 

(ii) populations including a crossover operator. In both cases, significant evolutionary differences are 

observed, classifying individuals in different classes according to their genotypic frequencies. Finally, in 

order to assess whether there is an influence of computer "hardware" in the simulated evolution, 

experiments were performed on a conventional computer and using a supercomputer. Surprisingly the 

results obtained allow us to conclude that the type of computer used has no significant effect on 

evolutionary computation experiments, as long as evolution is the result of Darwinian natural selection. 

Keywords: interactive evolutionary algorithm, Dawkins’ biomorph program, artificial life, evolutionary 

computing on supercomputers 

ACM Classification Keywords: I.6 Simulation and Modeling  

Introduction 

One of the most popular evolutionary models in Artificial Life was introduced in 1986 by Richard 

Dawkins [Dawkins, 1986] in the book entitled "The Blind Watchmaker". The model introduced by 

Dawkins mimics the evolution of individuals termed as biomorphs and is inspired by the principle of 

continuity of ‘germ plasm’ introduced in 1893 by Weismann. The aim of the model was the simulation of 

the Darwin’s principle of natural selection [Lahoz-Beltra, 2008] in individuals with asexual reproduction 

[Lahoz-Beltra, 2004]. Therefore, the mutation is the only source of variability and the mechanism for 

evolution is the familiar principle of cumulative selection. In the Dawkins’ original model is the 

researcher - playing the role of a "blind watchmaker" - who selects in accordance with their own criteria 

(e.g. the largest, smaller, beautiful etc.) the optimum biomorph in every generation. One of the goals of 

the present paper was to overcome these limitations, transforming the algorithm introduced by 
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Dawkins, thus an interactive evolutionary algorithm, in a genetic algorithm (GA) [Guil Lopez, 2000]. 

Interactive evolutionary algorithms use human evaluation as a fitness function [Milani, 2004], e.g. 

aesthetic selection based on biomorph attractiveness, being Darwinian selection the result of human 

preferences. In this paper we substitute the evaluation made by a human by a fitness function. Also we 

studied the role of genetic crossover in evolution, building an evolutionary algorithm (EA without 

crossover) and a genetic algorithm (GA including crossover). Therefore, from a biological point of view, 

the genetic algorithm simulates a population of biomorphs with sexual reproduction whereas the 

evolutionary algorithm emulates a population of biomorphs with asexual reproduction. Simulation 

experiments with EAs and GAs were performed on a personal computer and a supercomputer SGI-

Cray ORIGIN 2000 in order to figure out whether the evolution of a population of biomorphs depends on 

the type of hardware, i.e. the ‘test tube’, where the evolution experiments were conducted. The 

experiments described in this paper are part of the work done during several years of work [Guil Lopez, 

2000] about bio-inspired evolutionary algorithms [Lahoz-Beltra, 2008; Perales-Gravan et al., 2013; Thai 

Dam and Lahoz-Beltra, 2014]. At present we continue working on this long term research project.  

 

 

Figure 1. Dawkins’ original algorithm [Dawkins, 1986]. A parental individual (P) will produce an offspring 

of n ‘children’ (Ch). The children are similar to P, except for the value of a gene which has changed by 

mutation. A human selects according to their judgment the ‘best biomorph’ (Chi) which will produce a 

new offspring of n children. This loop is repeated again and again until we decide to conclude the 

evolutionary cycle. 
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From the Dawkins’ algorithm to a Dawkins genetic algorithm  

In the original model introduced by Dawkins (Figure 1) an individual or biomorph is represented by a 

one-dimensional array or vector which simulates a chromosome. A position on chromosome simulates 

a gene, being chromosomes constituted by eight genes {gene1, gene2 ,…, gene8} whose values are 

positive integers, i.e. igene  . The genes values codify for the biomorph shape or phenotype as 

defined in Table 1. From a genetic point of view the phenotypic expression of a character can be the 

result of the sum of several genes, e.g. branching length L (gene 3 + gene 4), denominating these 

genes as polymers factors or cumulative factors. In other cases some genes multiply their effects as it 

occurs again with the branching length L (gene 3 * gene 4). The model also includes epistasis, thus the 

interaction of genes affecting the same character, modifying as a consequence the Mendelian 

segregation (Mendel’s genetic laws). For instance, in the present model the genes encoding branches 

angles, i.e. genes 6 and 7, have an effect on the character "branching length" that is encoded by genes 

3, 4 and 5. Figure 1 shows the recursive algorithm introduced by Dawkins. In this paper we studied 

populations without crossover or asexual reproduction (Figure 2) and populations with crossover or 

sexual reproduction (Figure 3), but substituting in both cases the human selection by a selection 

operator. The aim of the selection operator is the Darwinian selection of biomorphs from which the next 

generation will be obtained. The fitness of each individual was calculated as follows.  

 

Table 1. Biomorph’s chromosome or genotype (gene1, gene2 ,…, gene8) 

 
Gene 1: Number of offspring individuals 
Gene 2: Number iterations to draw a biomorph 
Genes 3 and 4: Numbers encoding for the length of the branches 
Gene 5: Length of a branch L is defined according to the following algorithm 

  Gene 3 + Gene 4   ,   if Gene 5 is an even number 

Gene 3 * Gene 4   ,    if Gene 5 is an odd number
L


 


 

Gene 6: Angle of the first branching 
Gene 7: Angle between the second and first branching 
Gene 8: Length of the body 
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Figure 2.  Dawkins’ evolutionary algorithm. ‘Human evaluation’ is substituted by a fitness function. Note 

that no recombination or crossover mechanism is present. Therefore from a biological point of view we 

would be simulating a population with asexual reproduction. 

 

First, we define the best individual, thus the optimal genotype or chromosome, referred as ‘target 

biomorph’. The choice of a target individual was performed by applying one or other of the following 

criteria. A first protocol is the Criterion of Equitable Distribution. According to this criterion the Euclidean 

distance between the target individual and the parental individual is similar for the two parental 

individuals, being in the simulation experiments equal to 9.85 units. In addition, the selected genotype 

is obtained as follows: 50% is obtained by mutation and the remaining 50% results from the 

recombination or crossover of parental individuals. In the experiments conducted with crossover or 

sexual reproduction (Figure 3), in the initial generation (t = 0) the parental genotypes (gene1, gene2 ,…, 

gene8) were (11, 0, 1, 2, 4, 0, 92, 10) and (16, 0, 3, 7, 6, 0, 95, 13). Likewise, the genotype of the target 

biomorph was (16, 5, 6, 2, 1, 2, 95, 10). The second protocol was termed Restrictive Criterion. In 

addition, fulfilled the above assumption with Euclidean distance (the distance between the target 

individual and the two parental individuals is equal to 9.85), in the conducted simulation experiments 

the maximum values of the first four genes in the genotype should be equal to a set of values: 16, 10, 8 

and 8. The other values of genes are chosen within the interval [a+10, b-10], where a and b values are 

the higher and lower of each gene value in the parental biomorphs. According to this criterion we 

selected the following target biomorph (16, 5, 6, 2, 1, 2, 95, 10). 
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Figure 3. Dawkins’ genetic algorithm. ‘Human evaluation’ is substituted by a fitness function. Since 

there is crossover, we would be simulating a population with sexual reproduction. Accordingly, 

Darwinian selection will select a pair of parental individuals: Chi and Chj. 

 

Since in the experiments without crossover or asexual reproduction (Figure 2) there is only one parental 

individual at t = 0, all simulation experiments were performed with the initial genotype (16, 0, 3, 7, 6, 0, 

95, 13). 

Secondly, we calculate a ‘genetic distance’ (1) , i.e. the Euclidean distance di between the genotypes of 

biomorph i ( igene ) and target biomorph ( target
igene ): 

 

 2argt et
i i i

i

d gene gene   (1)

 

After calculating distance (1) the obtained value di will be the first argument of the fitness function. In 

this paper F1-F4 (Table 2) are the proposed evaluation or fitness functions that we will use to transform 

Dawkins’ algorithm into a true genetic algorithm. Given a fitness function and a set of distances di from 

individuals of the same generation, we obtain the minimum distance dmin, thus the second argument of 

the fitness function.  
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Simulation experiments were conducted based on the following fitness function parameters: 0.1  , 

0.9  and 0.2  , where the k value was equal to zero (k = 0) for populations with a maximum of 500 

individuals. Otherwise, k = 300 when the population size exceeded 500 individuals. Once we obtained 

the fitness value of each individual, the selection of parental individuals was conducted by a Bernoulli 

roulette [Lahoz-Beltra, 2004]. According to this procedure, the selection probability of an individual (2) 

represented by its chromosome i is calculated as the ratio between the individual fitness and total 

fitness:  

 

 
 ( ) i

i
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f x
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Finally, given a random number Ui between 0 and 1, the individual or chromosome i is selected (R=1) 

for the next generation if it holds that: 

 

( ) , 0

( ) , 1
i

i

p i U R

p i U R

 
  

 (3)

 

In the simulation experiments with populations displaying crossover, i.e. sexual reproduction (Figure 3), 

the recombination operator was simulated with one and two cutting points, as is usual in genetic 

algorithms. Regarding mutation operator, and since the chromosome is a vector of positive integers, it 

was not possible to use the flip-bit method [Lahoz-Beltra, 2004]. Mutation was simulated as follows. 

First, a gene is chosen randomly, increasing or decreasing its value by one. Obviously the sense of 

mutation, increase or decrease, is also conducted at random. Secondly, mutation is applied taking into 

account the allowable range of values of the genes. For example, in the simulation experiments genes 

1, 2, 3 and 4 have maximum values equal to 16, 10, 8 and 8 respectively. 

 

Simulation experiments 

This study has been carried out for several years studying under different types of computer hardware 

(Tables 3-4) the evolution of biomorph populations. Populations were simulated based on two different 

versions of the Dawkins’ algorithm (Figures 2 and 3). The first simulation experiments were conducted 

in the late 90s using an IBM PC-compatible computer with Pentium III processor 450 MHz and 218 MB 

of RAM. The algorithms depicted in Figures 2 and 3 were written at that time in TurboPascal 7.0. 

Preliminary experiments were performed with the program BIOMURFFS: a program showing the 

Dawkins’ original algorithm (Figure 1) written in QBASIC for recreational purposes [Prata, 1993]. The 

simulation experiments (Table 3) were performed testing the fitness function F1 (Table 2) with 

populations of 16 biomorphs, simulating the evolution during 500 generations. In each generation the 

offspring came from a single individual or a couple of individuals depending on whether the algorithm 

simulates asexual (Figure 2) or sexual (Figure 3) reproduction. In the latter case, and therefore when 

biomorphs display crossover, recombination was simulated with one and two cutting points, choosing 

different recombination probability values (0.25, 0.50 and 0.75). 
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Table 3.- Experimental conditions in the simulations conducted with IBM PC-compatible computer 

 Standard population

 Asexual reproduction Sexual reproduction 

Population size 16 16 

Number parental 
individuals 

1 individual 1 couple 

Number of generations 500 500 

 

Some years later, a second batch of simulation experiments was performed on a SGI-Cray ORIGIN 

2000 supercomputer with 40 MIPS R10000 250 MHz microprocessors and 16 MIPS R12000 400 MHz 

microprocessors, with 12 GB of RAM and 190 GB hard drive. Of course, today many of these features 

have already been overcome but the results are still valid. Once again the two different versions of the 

Dawkins’ algorithm (Figures 2 and 3) were implemented but this time in C language, and compiled with 

the MIPSproC compiler under IRIS 6.5 OS. The compilation was made with the option "-Ofast" in order 

to minimize runtime, using a C mathematical library implemented for the IRIS system. After several 

preliminary experiments we decided to evaluate the biomorphs fitness using F4 function. Experiments 

with populations displaying sexual reproduction were performed with a two-point crossover operator 

and probability equal to 0.5. Simulation experiments were carried out increasing the population size, the 

number of parental biomorphs per generation and the number of simulated generations (Table 4).  

 

Table 4.- Experimental conditions in the simulations conducted with SGI-Cray ORIGIN 2000 

supercomputer 

 Standard population Increased population 

 Asexual reproduction Sexual 
reproduction 

Asexual 
reproduction 

Sexual 
reproduction 

Population 
size 

16 16 160 160 

Number 
parental 
individuals 

1 individual 1 couple 10 individuals 10 couples 

Number of 
generations 

1000 1500 1000 1500 1000 1500 1000 1500 
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Results 

Despite the time that has elapsed since we conducted the experiments, in our opinion the results are 

still perfectly valid. In fact currently we are developing a quantum genetic algorithm version of the 

Dawkins’ original algorithm. The results obtained under the original Dawkins’ standard population 

conditions, i.e. a population size equal to 16 (Table 3 and 4), were similar in the two kinds of computers, 

i.e. in the experiments conducted with IBM PC-compatible computer and SGI-Cray ORIGIN 2000 

computer. Therefore, we can conclude that for these experimental conditions has no influence the type 

of computer used to run the simulations and the number of studied generations (500, 1000 or 1500). 

However, the evolutionary convergence differs depending on the type of reproduction. Evolutionary 

convergence was analyzed for each biomorph plotting the genetic distances: on the y-axis from the 

parental biomorph and the x-axis from the target biomorph. In the experiments with asexual 

reproduction (Figure 4 a, c) populations exhibit higher evolutionary fluctuations, requiring a greater 

number of generations to achieve the target genotype. That is, sexually reproducing populations (Figure 

4 b, d) reach the target genotype in a smaller number of generations. If we compare the evolutionary 

convergence of both types of reproduction with a card player, e.g. in the game of blackjack, the 

biomorphs with asexual reproduction would be "conservative players" avoiding a maximum adaption to 

their environment. Of course, in this metaphor the environment will be the casino where life is brought 

into play. By contrast, the biomorphs with sexual reproduction would be "risky players" showing a 

maximum adaptation to their environment. In both cases and for small values of genetic distances (near 

to the optimal genotype or target values), we observed a cluster of genetic distances which we have 

termed “arrowhead” (Figure 4 a-d). 

However, when experiments were conducted under large population conditions (Table 4) some 

remarkable differences were observed. One of the most striking differences is the absence of an 

"arrowhead" cluster (Figure 4 e, f). Likely this result could be explained considering that in those 

populations with asexual reproduction the offspring is obtained by ‘bipartition’ of 10 parental individuals. 

Similarly, the explanation could be the same in those populations with sexual reproduction where the 

offspring is obtained by ‘sexual intercourse’ in 10 couples. Moreover, although we have increased the 

number of generations, populations do not reach the target genotype. Consequently, in large 

populations a lower evolutionary convergence might be due to a greater variability of individuals.  
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Figure 4.- Simulation experiments.  

(Left) Evolutionary convergence plot (genetic distance from the parental biomorph=y-axis, genetic 

distance from the target biomorph=x-axis). For explanation see text.  

(Right) Performance graph obtained in the simulation experiments (A) Dawkins’ evolutionary algorithm 

(B) Dawkins’ genetic algorithm 

 

 

The performance graph [Lahoz-Beltra and Perales-Gravan, 2010] was similar in the two batches of 

experiments, the experiments conducted with IBM PC-compatible and SGI-Cray ORIGIN 2000 

computers. However, the graphical representation of the average fitness and individual fitness per 

generation (Figure 4) depends on whether the reproduction is asexual (Figure 2) or sexual (Figure 3). 

For both kinds of reproduction we observed a first stage with low fitness value: from generation 1 to 108 

in the populations with asexual reproduction and from 1 to 83 in populations with sexual reproduction. 

From 109 and 84 generations, depending on whether the reproduction is asexual or sexual, begins a 

second stage. In this stage individuals reach the target genotype (genetic distance near o equal to 0) or 

individuals are very close to the target genotype (the average fitness value is 109.89 units or 

equivalently a genetic distance equal to 1 unit). Nevertheless, variability is greater in the bimorphs with 

sexual reproduction compared to those with asexual reproduction. Moreover, if we consider the 

individual fitness value in both types of reproduction, we conclude the formation of genotypic classes or 
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clusters of individuals throughout generations. An analysis of the genotypic frequency of individuals per 

class, allows us to conclude that the observed number of clusters is greater in populations with sexual 

reproduction than asexual reproduction. In fact the number of categories or clusters increases with the 

variability and the number of simulated generations: 12, 23, 197, 223, 1796 and 2407 clusters for the 

case in which we studied asexual reproduction – 500 generations – 1 parental individual (Figure 5a),  

sexual reproduction – 500 generations – 1 couple parental individuals (Figure 5b),  asexual 

reproduction – 1000 generations – 1 parental individual (Figure 5c),  sexual reproduction – 1000 

generations – 1 couple parental individuals (Figure 5d),  asexual reproduction – 1000 generations – 10 

parental individuals (Figure 5e) and sexual reproduction – 1000 generations – 10 couples parental 

individuals (Figure 5f), respectively. Assuming that the distribution of genotypic frequencies is 

multinomial, and confining the study to those experiments with 500 generations, we have e.g. that in 

the case of asexual reproduction with a single parent, the following frequency distribution: 

 

1 2 3 4 5 6

1 2 3 4 5 6
1 2 3 4 5 6

1496 1389 327 0 919 1334
( , , , , , )

! ! ! ! ! ! 5465 5465 5465 5465 5465 5465

x x x x x x
n

f x x x x x x
x x x x x x

                       
           

(4) 

 

whereas for experiments with sexual reproduction and one couple of parents, we obtained the following 

frequency distribution: 

 

1 2 3 4 5 6

1 2 3 4 5 6
1 2 3 4 5 6

1453 1043 189 720 440 1334
( , , , , , )

! ! ! ! ! ! 5465 5465 5465 5465 5465 5465

x x x x x x
n

f x x x x x x
x x x x x x

                       
           

(5) 

 

The study of above frequency distributions (4, 5) allows us to obtain the following conclusions. Firstly, it 

is noteworthy that there are certain classes that appear with high frequency regardless of type of 

reproduction. Secondly, when simulations are conducted with asexual reproduction there are more 

classes with zero frequency compared with those experiments with sexual reproduction. Finally, and for 

both types of reproduction, the classes with higher frequencies are those that contain a high number of 

individuals with high fitness values. 

One of the achievements of this work was to introduce a fitness function (Figure 6) in the original 

Dawkins’ evolutionary algorithm [Guil Lopez et al., 2000]. The aim was to replace the evaluation 

performed by a human (aesthetic selection) by a selection operator, transforming the Dawkins 
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interactive evolutionary algorithm into a true genetic algorithm. F1 function was the first fitness function 

proposed in this study, evaluating biomorphs in the simulation experiments conducted with IBM PC-

compatible. This function was a mathematical expression that was obtained from the original 

expression shown in Figure 6. In F1 function and the remaining fitness functions we considered the 

case where the genetic Euclidean distance (1) is equal to or different from zero, avoiding the 

emergence of a ‘dominant chromosome’ with a disproportionately high fitness value. Parameters   

and    were defined in the function with the following purpose. For large values of the genetic distance 

the   parameter included into the negative term of the fitness function decreases the fitness value. 

However the parameter plays the opposite role in the denominator of the fitness function. Another effect 

to correct occurs when small value of the Euclidean distance causes a large increase in the fitness 

value. Parameter   was introduced in order to moderate the increase in the fitness value. Finally, k 

term was introduced in order to ensure that the function is always positive, because when the 

population size increases also increases the minimum distance (dmin). F2, F3 and F4 fitness functions 

are very similar to F1 function and were used to evaluate the biomorphs in the simulation experiments 

conducted with SGI-Cray ORIGIN 2000 supercomputer. F2 displays a trouble taking negative values for 

large Euclidean distances. For this reason F3 was introduced, returning the absolute value of F2. 

Finally, all simulation experiments with the supercomputer were performed with F4.  

 

Conclusion 

We show an example of how to transform an interactive evolutionary algorithm, i.e. the biomorphs 

model introduced by Dawkins, in a genetic algorithm. One of the critical steps was the search for a 

fitness function that measures the ‘physical quality’ of individuals. In addition we studied two 

experimental situations - biomorphs populations with only mutation (asexual reproduction) and 

populations including crossover (sexual reproduction). In both cases, significant evolutionary 

differences were observed, classifying individuals in different classes or clusters according to their 

genotypic frequencies. Finally, we found that the type of computer hardware has no significant effect on 

evolutionary computation experiments, as long as evolution is explained by the Darwinian principle of 

natural selection. 
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Figure 5.- Genotypic frequency of individuals per class or cluster (for explanation see text) 
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Figure 6.-  ‘Seminal fitness function’ f(x) from which the functions F1-F4 of the Table 2 were obtained 
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